Suppr超能文献

基因-环境相互作用引发的极端拮抗作用。

Extreme Antagonism Arising from Gene-Environment Interactions.

作者信息

Wytock Thomas P, Zhang Manjing, Jinich Adrian, Fiebig Aretha, Crosson Sean, Motter Adilson E

机构信息

Department of Physics and Astronomy, Northwestern University, Evanston, Illinois.

The Committee on Microbiology, University of Chicago, Chicago, Illinois.

出版信息

Biophys J. 2020 Nov 17;119(10):2074-2086. doi: 10.1016/j.bpj.2020.09.038. Epub 2020 Oct 15.

Abstract

Antagonistic interactions in biological systems, which occur when one perturbation blunts the effect of another, are typically interpreted as evidence that the two perturbations impact the same cellular pathway or function. Yet, this interpretation ignores extreme antagonistic interactions wherein an otherwise deleterious perturbation compensates for the function lost because of a prior perturbation. Here, we report on gene-environment interactions involving genetic mutations that are deleterious in a permissive environment but beneficial in a specific environment that restricts growth. These extreme antagonistic interactions constitute gene-environment analogs of synthetic rescues previously observed for gene-gene interactions. Our approach uses two independent adaptive evolution steps to address the lack of experimental methods to systematically identify such extreme interactions. We apply the approach to Escherichia coli by successively adapting it to defined glucose media without and with the antibiotic rifampicin. The approach identified multiple mutations that are beneficial in the presence of rifampicin and deleterious in its absence. The analysis of transcription shows that the antagonistic adaptive mutations repress a stringent response-like transcriptional program, whereas nonantagonistic mutations have an opposite transcriptional profile. Our approach represents a step toward the systematic characterization of extreme antagonistic gene-drug interactions, which can be used to identify targets to select against antibiotic resistance.

摘要

生物系统中的拮抗相互作用,即一种干扰减弱另一种干扰的作用,通常被解释为这两种干扰影响相同细胞途径或功能的证据。然而,这种解释忽略了极端拮抗相互作用,即在其他情况下有害的干扰会补偿先前干扰导致的功能丧失。在此,我们报告了基因 - 环境相互作用,涉及在宽松环境中有害但在限制生长的特定环境中有益的基因突变。这些极端拮抗相互作用构成了先前在基因 - 基因相互作用中观察到的合成拯救的基因 - 环境类似物。我们的方法使用两个独立的适应性进化步骤来解决缺乏系统识别此类极端相互作用的实验方法的问题。我们将该方法应用于大肠杆菌,通过先后使其适应不含和含有抗生素利福平的限定葡萄糖培养基。该方法鉴定出多个在有 rifampicin 时有益而在其不存在时有害的突变。转录分析表明,拮抗适应性突变抑制了一种类似严谨反应的转录程序,而非拮抗突变具有相反的转录谱。我们的方法朝着系统表征极端拮抗基因 - 药物相互作用迈出了一步,这可用于识别针对抗生素抗性进行选择的靶点。

相似文献

1
Extreme Antagonism Arising from Gene-Environment Interactions.
Biophys J. 2020 Nov 17;119(10):2074-2086. doi: 10.1016/j.bpj.2020.09.038. Epub 2020 Oct 15.
2
Multiple Resistance at No Cost: Rifampicin and Streptomycin a Dangerous Liaison in the Spread of Antibiotic Resistance.
Mol Biol Evol. 2015 Oct;32(10):2675-80. doi: 10.1093/molbev/msv143. Epub 2015 Jun 30.
3
Genotype-by-environment interactions due to antibiotic resistance and adaptation in Escherichia coli.
J Evol Biol. 2013 Aug;26(8):1655-64. doi: 10.1111/jeb.12172. Epub 2013 May 23.
5
The environment affects epistatic interactions to alter the topology of an empirical fitness landscape.
PLoS Genet. 2013 Apr;9(4):e1003426. doi: 10.1371/journal.pgen.1003426. Epub 2013 Apr 4.
6
Epistasis buffers the fitness effects of rifampicin- resistance mutations in Pseudomonas aeruginosa.
Evolution. 2011 Aug;65(8):2370-9. doi: 10.1111/j.1558-5646.2011.01302.x. Epub 2011 May 10.
8
Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance.
J Mol Biol. 1988 Jul 5;202(1):45-58. doi: 10.1016/0022-2836(88)90517-7.
9
Multidrug-resistant bacteria compensate for the epistasis between resistances.
PLoS Biol. 2017 Apr 18;15(4):e2001741. doi: 10.1371/journal.pbio.2001741. eCollection 2017 Apr.
10
The cost of antibiotic resistance depends on evolutionary history in Escherichia coli.
BMC Evol Biol. 2013 Aug 2;13:163. doi: 10.1186/1471-2148-13-163.

引用本文的文献

1
Cross-species metabolomic analysis of tau- and DDT-related toxicity.
PNAS Nexus. 2022 May 3;1(2):pgac050. doi: 10.1093/pnasnexus/pgac050. eCollection 2022 May.
3
Enhancement and mapping of tolerance to salt stress and 5-fluorocytosine in synthetic yeast strains via SCRaMbLE.
Synth Syst Biotechnol. 2022 Apr 16;7(3):869-877. doi: 10.1016/j.synbio.2022.04.003. eCollection 2022 Sep.
4
Dissecting the Fitness Costs of Complex Mutations.
Mol Biol Evol. 2021 Sep 27;38(10):4520-4531. doi: 10.1093/molbev/msab193.

本文引用的文献

1
Antibiotic interactions shape short-term evolution of resistance in E. faecalis.
PLoS Pathog. 2020 Mar 2;16(3):e1008278. doi: 10.1371/journal.ppat.1008278. eCollection 2020 Mar.
2
Using Selection by Nonantibiotic Stressors to Sensitize Bacteria to Antibiotics.
Mol Biol Evol. 2020 May 1;37(5):1394-1406. doi: 10.1093/molbev/msz303.
3
The Escherichia coli transcriptome mostly consists of independently regulated modules.
Nat Commun. 2019 Dec 4;10(1):5536. doi: 10.1038/s41467-019-13483-w.
4
Evolutionary regain of lost gene circuit function.
Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25162-25171. doi: 10.1073/pnas.1912257116. Epub 2019 Nov 21.
5
Emergent Gene Expression Responses to Drug Combinations Predict Higher-Order Drug Interactions.
Cell Syst. 2019 Nov 27;9(5):423-433.e3. doi: 10.1016/j.cels.2019.10.004. Epub 2019 Nov 13.
7
Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance.
PLoS Biol. 2019 Oct 25;17(10):e3000515. doi: 10.1371/journal.pbio.3000515. eCollection 2019 Oct.
8
Recent insights into the genotype-phenotype relationship from massively parallel genetic assays.
Evol Appl. 2019 Aug 11;12(9):1721-1742. doi: 10.1111/eva.12846. eCollection 2019 Oct.
9
Environment changes epistasis to alter trade-offs along alternative evolutionary paths.
Evolution. 2019 Oct;73(10):2094-2105. doi: 10.1111/evo.13825. Epub 2019 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验