Suppr超能文献

应用机器学习对电子病历进行住院患者抗生素耐药性预测。

Predicting Antibiotic Resistance in Hospitalized Patients by Applying Machine Learning to Electronic Medical Records.

机构信息

Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv, Israel.

School of Public Health, Department of Epidemiology and Preventive Medicine, Tel-Aviv University, Tel-Aviv, Israel.

出版信息

Clin Infect Dis. 2021 Jun 1;72(11):e848-e855. doi: 10.1093/cid/ciaa1576.

Abstract

BACKGROUND

Computerized decision support systems are becoming increasingly prevalent with advances in data collection and machine learning (ML) algorithms. However, they are scarcely used for empiric antibiotic therapy. Here, we predict the antibiotic resistance profiles of bacterial infections of hospitalized patients using ML algorithms applied to patients' electronic medical records (EMRs).

METHODS

The data included antibiotic resistance results of bacterial cultures from hospitalized patients, alongside their EMRs. Five antibiotics were examined: ceftazidime (n = 2942), gentamicin (n = 4360), imipenem (n = 2235), ofloxacin (n = 3117), and sulfamethoxazole-trimethoprim (n = 3544). We applied lasso logistic regression, neural networks, gradient boosted trees, and an ensemble that combined all 3 algorithms, to predict antibiotic resistance. Variable influence was gauged by permutation tests and Shapely Additive Explanations analysis.

RESULTS

The ensemble outperformed the separate models and produced accurate predictions on test set data. When no knowledge regarding the infecting bacterial species was assumed, the ensemble yielded area under the receiver-operating characteristic (auROC) scores of 0.73-0.79 for different antibiotics. Including information regarding the bacterial species improved the auROCs to 0.8-0.88. Variables' effects on predictions were assessed and found to be consistent with previously identified risk factors for antibiotic resistance.

CONCLUSIONS

We demonstrate the potential of ML to predict antibiotic resistance of bacterial infections of hospitalized patients. Moreover, we show that rapidly gained information regarding the infecting bacterial species can improve predictions substantially. Clinicians should consider the implementation of such systems to aid correct empiric therapy and to potentially reduce antibiotic misuse.

摘要

背景

随着数据收集和机器学习 (ML) 算法的进步,计算机决策支持系统越来越普及。然而,它们在经验性抗生素治疗中很少使用。在这里,我们使用 ML 算法应用于患者的电子病历 (EMR),预测住院患者细菌感染的抗生素耐药谱。

方法

该数据包括住院患者细菌培养的抗生素耐药结果,以及他们的 EMR。检查了五种抗生素:头孢他啶 (n = 2942)、庆大霉素 (n = 4360)、亚胺培南 (n = 2235)、氧氟沙星 (n = 3117) 和磺胺甲恶唑-甲氧苄啶 (n = 3544)。我们应用套索逻辑回归、神经网络、梯度提升树以及组合这三种算法的集成来预测抗生素耐药性。通过置换检验和 Shapley 可加性解释分析来衡量变量的影响。

结果

集成模型优于单独的模型,并在测试集数据上产生了准确的预测。当不假设感染细菌种类的知识时,集成模型对不同抗生素的接收者操作特征曲线下面积 (auROC) 得分为 0.73-0.79。包括关于细菌种类的信息将 auROC 提高到 0.8-0.88。评估了变量对预测的影响,发现与先前确定的抗生素耐药风险因素一致。

结论

我们证明了 ML 预测住院患者细菌感染抗生素耐药性的潜力。此外,我们表明,关于感染细菌种类的快速获得的信息可以大大提高预测的准确性。临床医生应考虑实施此类系统,以帮助正确的经验性治疗,并有可能减少抗生素的滥用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验