Navarro-Flores María José, Ventura-Canseco Lucía María C, Meza-Gordillo Rocío, Ayora-Talavera Teresa Del Rosario, Abud-Archila Miguel
Division de Estudios de Posgrado e Investigación, Tecnológico Nacional de Mexico/IT de Tuxtla Gutierrez, Carretera Panamericana km. 1080, C.P. 29050 Tuxtla Gutiérrez, Chiapas Mexico.
Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Subsede Sureste, Parque Científico Tecnológico de Yucatan, Tablaje Catastral 31264, Carretera Sierra Papacal-Chuburna Puerto km 5.5, C.P. 97302 Mérida, Yucatan Mexico.
J Food Sci Technol. 2020 Nov;57(11):4111-4122. doi: 10.1007/s13197-020-04447-w. Epub 2020 Apr 17.
(chipilin) leaves contain phenolic compounds with antioxidant activity. These phenolic compounds, however, could easily degrade after extraction. Microencapsulation is a possible solution for avoiding this degradation. Frequently, microencapsulation is carried out using conventional encapsulating agents. The aim of this work was to evaluate the effect of several non-conventional encapsulating agents on microencapsulation by spray drying of phenolic compounds from chipilin, stability and release of phenolic compounds were also studied. Maltodextrin (MD), gum Arabic (GA), soy protein (SP), cocoa shell pectin (CSP), and protein (PC), as well as the gum (GC) of seeds were used. Different blends of these matrixes containing phenolic compounds from chipilin leaves were spray dried at 120 °C. After drying, the yield and microencapsulation efficiency were determined. All results were analyzed by an ANOVA test ( < 0.05). The release kinetics of phenolic compounds were modeled using zero, first-order, Higuchi and Korsmeyer-Peppas models. The R was calculated for each model. The blends of encapsulating agents allowed the formation of an efficient polymer matrix with yields between 46 and 64% and microencapsulation efficiency between 65 and 92%. Results show that maltodextrin with soy protein allowed the highest (92%) microencapsulation efficiency, although maltodextrin and cocoa shell pectin were more effective protective agents, showing greater stability. The Korsmeyer-Peppas model was the best in predicting the phenolic compounds release with R values higher than 98%. The stability time for microcapsules with MD-CSP was 8.88 years and 1.43 years at 4 °C and 30 °C, respectively.
奇比林叶含有具有抗氧化活性的酚类化合物。然而,这些酚类化合物在提取后很容易降解。微胶囊化是避免这种降解的一种可能解决方案。通常,微胶囊化是使用传统的包囊剂进行的。这项工作的目的是评估几种非传统包囊剂对奇比林酚类化合物喷雾干燥微胶囊化的影响,同时研究酚类化合物的稳定性和释放情况。使用了麦芽糊精(MD)、阿拉伯胶(GA)、大豆蛋白(SP)、可可壳果胶(CSP)和蛋白质(PC)以及种子胶(GC)。将含有奇比林叶酚类化合物的这些基质的不同混合物在120℃下进行喷雾干燥。干燥后,测定产率和微胶囊化效率。所有结果通过方差分析检验(<0.05)进行分析。使用零级、一级、Higuchi和Korsmeyer-Peppas模型对酚类化合物的释放动力学进行建模。计算每个模型的R值。包囊剂混合物能够形成高效的聚合物基质,产率在46%至64%之间,微胶囊化效率在65%至92%之间。结果表明,麦芽糊精与大豆蛋白的组合具有最高(92%)的微胶囊化效率,但麦芽糊精和可可壳果胶是更有效的保护剂,表现出更高的稳定性。Korsmeyer-Peppas模型在预测酚类化合物释放方面表现最佳,R值高于98%。MD-CSP微胶囊在4℃和30℃下的稳定时间分别为8.88年和1.43年。