Suppr超能文献

比较几种基于网络的新冠病毒预测算法的准确性。

Comparing the accuracy of several network-based COVID-19 prediction algorithms.

作者信息

Achterberg Massimo A, Prasse Bastian, Ma Long, Trajanovski Stojan, Kitsak Maksim, Van Mieghem Piet

机构信息

Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands.

Microsoft Inc., 2 Kingdom St, London W2 6BD, United Kingdom.

出版信息

Int J Forecast. 2022 Apr-Jun;38(2):489-504. doi: 10.1016/j.ijforecast.2020.10.001. Epub 2020 Oct 9.

Abstract

Researchers from various scientific disciplines have attempted to forecast the spread of coronavirus disease 2019 (COVID-19). The proposed epidemic prediction methods range from basic curve fitting methods and traffic interaction models to machine-learning approaches. If we combine all these approaches, we obtain the Network Inference-based Prediction Algorithm (NIPA). In this paper, we analyse a diverse set of COVID-19 forecast algorithms, including several modifications of NIPA. Among the algorithms that we evaluated, the original NIPA performed best at forecasting the spread of COVID-19 in Hubei, China and in the Netherlands. In particular, we show that network-based forecasting is superior to any other forecasting algorithm.

摘要

来自不同科学学科的研究人员试图预测2019冠状病毒病(COVID-19)的传播情况。提出的疫情预测方法从基本的曲线拟合方法、交通交互模型到机器学习方法不等。如果我们将所有这些方法结合起来,就得到了基于网络推理的预测算法(NIPA)。在本文中,我们分析了一系列不同的COVID-19预测算法,包括NIPA的几种改进版本。在我们评估的算法中,原始的NIPA在预测COVID-19在中国湖北和荷兰的传播情况方面表现最佳。特别是,我们表明基于网络的预测优于任何其他预测算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/7546239/f2d01b64f44d/gr1_lrg.jpg

相似文献

1
Comparing the accuracy of several network-based COVID-19 prediction algorithms.
Int J Forecast. 2022 Apr-Jun;38(2):489-504. doi: 10.1016/j.ijforecast.2020.10.001. Epub 2020 Oct 9.
2
Network-inference-based prediction of the COVID-19 epidemic outbreak in the Chinese province Hubei.
Appl Netw Sci. 2020;5(1):35. doi: 10.1007/s41109-020-00274-2. Epub 2020 Jul 8.
4
Forecasting the long-term trend of COVID-19 epidemic using a dynamic model.
Sci Rep. 2020 Dec 3;10(1):21122. doi: 10.1038/s41598-020-78084-w.
5
COVID-19 cases prediction by using hybrid machine learning and beetle antennae search approach.
Sustain Cities Soc. 2021 Mar;66:102669. doi: 10.1016/j.scs.2020.102669. Epub 2020 Dec 30.
7
Research on a Novel Hybrid Decomposition-Ensemble Learning Paradigm Based on VMD and IWOA for PM Forecasting.
Int J Environ Res Public Health. 2021 Jan 24;18(3):1024. doi: 10.3390/ijerph18031024.
8
An Empirical Mode Decomposition Fuzzy Forecast Model for COVID-19.
Neural Process Lett. 2022 Apr 25:1-22. doi: 10.1007/s11063-022-10836-3.
9
Time series forecasting of COVID-19 transmission in Canada using LSTM networks.
Chaos Solitons Fractals. 2020 Jun;135:109864. doi: 10.1016/j.chaos.2020.109864. Epub 2020 May 8.
10
Marine Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in Italy, USA, Iran and Korea.
Int J Environ Res Public Health. 2020 May 18;17(10):3520. doi: 10.3390/ijerph17103520.

引用本文的文献

2
Reporting delays: A widely neglected impact factor in COVID-19 forecasts.
PNAS Nexus. 2024 May 22;3(6):pgae204. doi: 10.1093/pnasnexus/pgae204. eCollection 2024 Jun.
3
A simplicial epidemic model for COVID-19 spread analysis.
Proc Natl Acad Sci U S A. 2024 Jan 2;121(1):e2313171120. doi: 10.1073/pnas.2313171120. Epub 2023 Dec 26.
4
Comparison of Three Prediction Models for Predicting Chronic Obstructive Pulmonary Disease in China.
Int J Chron Obstruct Pulmon Dis. 2023 Dec 12;18:2961-2969. doi: 10.2147/COPD.S431115. eCollection 2023.
6
On sparse ensemble methods: An application to short-term predictions of the evolution of COVID-19.
Eur J Oper Res. 2021 Dec 1;295(2):648-663. doi: 10.1016/j.ejor.2021.04.016. Epub 2021 Apr 18.
7
Predicting COVID-19 community infection relative risk with a Dynamic Bayesian Network.
Front Public Health. 2022 Oct 28;10:876691. doi: 10.3389/fpubh.2022.876691. eCollection 2022.
8
Autoregressive count data modeling on mobility patterns to predict cases of COVID-19 infection.
Stoch Environ Res Risk Assess. 2022;36(12):4185-4200. doi: 10.1007/s00477-022-02255-6. Epub 2022 Jun 23.

本文引用的文献

1
Network-based prediction of COVID-19 epidemic spreading in Italy.
Appl Netw Sci. 2020;5(1):91. doi: 10.1007/s41109-020-00333-8. Epub 2020 Nov 17.
2
SEIR modeling of the COVID-19 and its dynamics.
Nonlinear Dyn. 2020;101(3):1667-1680. doi: 10.1007/s11071-020-05743-y. Epub 2020 Jun 18.
3
Short-term forecasts and long-term mitigation evaluations for the COVID-19 epidemic in Hubei Province, China.
Infect Dis Model. 2020;5:563-574. doi: 10.1016/j.idm.2020.08.001. Epub 2020 Aug 13.
4
Network-inference-based prediction of the COVID-19 epidemic outbreak in the Chinese province Hubei.
Appl Netw Sci. 2020;5(1):35. doi: 10.1007/s41109-020-00274-2. Epub 2020 Jul 8.
6
Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China.
Science. 2020 May 15;368(6492):742-746. doi: 10.1126/science.abb4557. Epub 2020 Apr 8.
7
Covid-19: four fifths of cases are asymptomatic, China figures indicate.
BMJ. 2020 Apr 2;369:m1375. doi: 10.1136/bmj.m1375.
8
Optimization Method for Forecasting Confirmed Cases of COVID-19 in China.
J Clin Med. 2020 Mar 2;9(3):674. doi: 10.3390/jcm9030674.
10
A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures.
Neural Comput. 2019 Jul;31(7):1235-1270. doi: 10.1162/neco_a_01199. Epub 2019 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验