Wang Yu-Bo, Chen Ming-Hui, Shi Wei, Lewis Paul, Kuo Lynn
School of Mathematical and Statistical Sciences, Clemson University.
Department of Statistics, University of Connecticut.
J Korean Stat Soc. 2020 Mar;49(1):244-263. doi: 10.1007/s42952-019-00013-z. Epub 2020 Jan 1.
In the Bayesian framework, the marginal likelihood plays an important role in variable selection and model comparison. The marginal likelihood is the marginal density of the data after integrating out the parameters over the parameter space. However, this quantity is often analytically intractable due to the complexity of the model. In this paper, we first examine the properties of the inflated density ratio (IDR) method, which is a Monte Carlo method for computing the marginal likelihood using a single MC or Markov chain Monte Carlo (MCMC) sample. We then develop a variation of the IDR estimator, called the dimension reduced inflated density ratio (Dr.IDR) estimator. We further propose a more general identity and then obtain a general dimension reduced (GDr) estimator. Simulation studies are conducted to examine empirical performance of the IDR estimator as well as the Dr.IDR and GDr estimators. We further demonstrate the usefulness of the GDr estimator for computing the normalizing constants in a case study on the inequality-constrained analysis of variance.
在贝叶斯框架中,边际似然在变量选择和模型比较中起着重要作用。边际似然是在参数空间上对参数进行积分后数据的边际密度。然而,由于模型的复杂性,这个量通常在解析上难以处理。在本文中,我们首先研究了膨胀密度比(IDR)方法的性质,它是一种使用单个蒙特卡罗(MC)或马尔可夫链蒙特卡罗(MCMC)样本计算边际似然的蒙特卡罗方法。然后,我们开发了IDR估计器的一种变体,称为降维膨胀密度比(Dr.IDR)估计器。我们进一步提出了一个更通用的恒等式,然后得到了一个通用降维(GDr)估计器。进行了模拟研究以检验IDR估计器以及Dr.IDR和GDr估计器的实证性能。我们在一个关于不等式约束方差分析的案例研究中进一步证明了GDr估计器在计算归一化常数方面的有用性。