Suppr超能文献

基于多组学工具的用于生物能源应用的嗜极微生物群落和酶

Extremophile Microbial Communities and Enzymes for Bioenergetic Application Based on Multi-Omics Tools.

作者信息

Fongaro Gislaine, Maia Guilherme Augusto, Rogovski Paula, Cadamuro Rafael Dorighello, Lopes Joana Camila, Moreira Renato Simões, Camargo Aline Frumi, Scapini Thamarys, Stefanski Fábio Spitza, Bonatto Charline, Marques Souza Doris Sobral, Stoco Patrícia Hermes, Duarte Rubens Tadeu Delgado, Cabral da Cruz Ariadne Cristiane, Wagner Glauber, Treichel Helen

机构信息

1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil.

出版信息

Curr Genomics. 2020 May;21(4):240-252. doi: 10.2174/1389202921999200601144137.

Abstract

Genomic and proteomic advances in extremophile microorganism studies are increasingly demonstrating their ability to produce a variety of enzymes capable of converting biomass into bioenergy. Such microorganisms are found in environments with nutritional restrictions, anaerobic environments, high salinity, varying pH conditions and extreme natural environments such as hydrothermal vents, soda lakes, and Antarctic sediments. As extremophile microorganisms and their enzymes are found in widely disparate locations, they generate new possibilities and opportunities to explore biotechnological prospecting, including biofuels (biogas, hydrogen and ethanol) with an aim toward using multi-omics tools that shed light on biotechnological breakthroughs.

摘要

嗜极微生物研究中的基因组学和蛋白质组学进展越来越多地表明,它们有能力产生多种能够将生物质转化为生物能源的酶。这些微生物存在于营养受限的环境、厌氧环境、高盐环境、不同pH条件的环境以及极端自然环境中,如热液喷口、苏打湖和南极沉积物。由于嗜极微生物及其酶存在于广泛不同的地点,它们为探索生物技术勘探创造了新的可能性和机会,包括生物燃料(沼气、氢气和乙醇),目标是使用多组学工具来揭示生物技术突破。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/886d/7521039/caadc1411629/CG-21-240_F1.jpg

相似文献

1
Extremophile Microbial Communities and Enzymes for Bioenergetic Application Based on Multi-Omics Tools.
Curr Genomics. 2020 May;21(4):240-252. doi: 10.2174/1389202921999200601144137.
2
Bioprospecting of Novel Extremozymes From Prokaryotes-The Advent of Culture-Independent Methods.
Front Microbiol. 2021 Feb 10;12:630013. doi: 10.3389/fmicb.2021.630013. eCollection 2021.
3
Towards a sustainable biobased industry - Highlighting the impact of extremophiles.
N Biotechnol. 2018 Jan 25;40(Pt A):144-153. doi: 10.1016/j.nbt.2017.05.002. Epub 2017 May 13.
4
Marine extremophiles: a source of hydrolases for biotechnological applications.
Mar Drugs. 2015 Apr 3;13(4):1925-65. doi: 10.3390/md13041925.
7
Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond.
Naturwissenschaften. 2011 Apr;98(4):253-79. doi: 10.1007/s00114-011-0775-2. Epub 2011 Mar 11.
8
A comprehensive review on chromium (Cr) contamination and Cr(VI)-resistant extremophiles in diverse extreme environments.
Environ Sci Pollut Res Int. 2023 May;30(21):59163-59193. doi: 10.1007/s11356-023-26624-y. Epub 2023 Apr 13.
10
Cultivation strategies for prokaryotes from extreme environments.
Imeta. 2023 Jun 12;2(3):e123. doi: 10.1002/imt2.123. eCollection 2023 Aug.

引用本文的文献

1
OMICS and Other Advanced Technologies in Mycological Applications.
J Fungi (Basel). 2023 Jun 19;9(6):688. doi: 10.3390/jof9060688.
2
Discovery of novel carbohydrate degrading enzymes from soda lakes through functional metagenomics.
Front Microbiol. 2022 Dec 7;13:1059061. doi: 10.3389/fmicb.2022.1059061. eCollection 2022.
3
Genomics of Extremophiles for Sustainable Agriculture and Biotechnological Applications (Part II).
Curr Genomics. 2020 May;21(4):238-240. doi: 10.2174/138920292104200626145516.

本文引用的文献

2
A Review on Viral Metagenomics in Extreme Environments.
Front Microbiol. 2019 Oct 18;10:2403. doi: 10.3389/fmicb.2019.02403. eCollection 2019.
3
Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes.
J Microbiol. 2019 Oct;57(10):865-873. doi: 10.1007/s12275-019-9217-1. Epub 2019 Sep 30.
4
Enzymes from Marine Polar Regions and Their Biotechnological Applications.
Mar Drugs. 2019 Sep 23;17(10):544. doi: 10.3390/md17100544.
7
A Novel Cold-Adapted and Salt-Tolerant RNase R from Antarctic Sea-Ice Bacterium sp. ANT206.
Molecules. 2019 Jun 14;24(12):2229. doi: 10.3390/molecules24122229.
8
Characterization of the cellulase-secretome produced by the Antarctic bacterium Flavobacterium sp. AUG42.
Microbiol Res. 2019 Jun-Aug;223-225:13-21. doi: 10.1016/j.micres.2019.03.009. Epub 2019 Mar 23.
9
Metaproteomics: Much More than Measuring Gene Expression in Microbial Communities.
mSystems. 2019 May 21;4(3):e00115-19. doi: 10.1128/mSystems.00115-19.
10
A new cold-active and alkaline pectate lyase from Antarctic bacterium with high catalytic efficiency.
Appl Microbiol Biotechnol. 2019 Jul;103(13):5231-5241. doi: 10.1007/s00253-019-09803-1. Epub 2019 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验