Fongaro Gislaine, Maia Guilherme Augusto, Rogovski Paula, Cadamuro Rafael Dorighello, Lopes Joana Camila, Moreira Renato Simões, Camargo Aline Frumi, Scapini Thamarys, Stefanski Fábio Spitza, Bonatto Charline, Marques Souza Doris Sobral, Stoco Patrícia Hermes, Duarte Rubens Tadeu Delgado, Cabral da Cruz Ariadne Cristiane, Wagner Glauber, Treichel Helen
1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
Curr Genomics. 2020 May;21(4):240-252. doi: 10.2174/1389202921999200601144137.
Genomic and proteomic advances in extremophile microorganism studies are increasingly demonstrating their ability to produce a variety of enzymes capable of converting biomass into bioenergy. Such microorganisms are found in environments with nutritional restrictions, anaerobic environments, high salinity, varying pH conditions and extreme natural environments such as hydrothermal vents, soda lakes, and Antarctic sediments. As extremophile microorganisms and their enzymes are found in widely disparate locations, they generate new possibilities and opportunities to explore biotechnological prospecting, including biofuels (biogas, hydrogen and ethanol) with an aim toward using multi-omics tools that shed light on biotechnological breakthroughs.
嗜极微生物研究中的基因组学和蛋白质组学进展越来越多地表明,它们有能力产生多种能够将生物质转化为生物能源的酶。这些微生物存在于营养受限的环境、厌氧环境、高盐环境、不同pH条件的环境以及极端自然环境中,如热液喷口、苏打湖和南极沉积物。由于嗜极微生物及其酶存在于广泛不同的地点,它们为探索生物技术勘探创造了新的可能性和机会,包括生物燃料(沼气、氢气和乙醇),目标是使用多组学工具来揭示生物技术突破。