Suppr超能文献

通过功能宏基因组学从苏打湖发现新型碳水化合物降解酶。

Discovery of novel carbohydrate degrading enzymes from soda lakes through functional metagenomics.

作者信息

Jeilu Oliyad, Simachew Addis, Alexandersson Erik, Johansson Eva, Gessesse Amare

机构信息

Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.

Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden.

出版信息

Front Microbiol. 2022 Dec 7;13:1059061. doi: 10.3389/fmicb.2022.1059061. eCollection 2022.

Abstract

Extremophiles provide a one-of-a-kind source of enzymes with properties that allow them to endure the rigorous industrial conversion of lignocellulose biomass into fermentable sugars. However, the fact that most of these organisms fail to grow under typical culture conditions limits the accessibility to these enzymes. In this study, we employed a functional metagenomics approach to identify carbohydrate-degrading enzymes from Ethiopian soda lakes, which are extreme environments harboring a high microbial diversity. Out of 21,000 clones screened for the five carbohydrate hydrolyzing enzymes, 408 clones were found positive. Cellulase and amylase, gave high hit ratio of 1:75 and 1:280, respectively. A total of 378 genes involved in the degradation of complex carbohydrates were identified by combining high-throughput sequencing of 22 selected clones and bioinformatics analysis using a customized workflow. Around 41% of the annotated genes belonged to the Glycoside Hydrolases (GH). Multiple GHs were identified, indicating the potential to discover novel CAZymes useful for the enzymatic degradation of lignocellulose biomass from the Ethiopian soda Lakes. More than 73% of the annotated GH genes were linked to bacterial origins, with as the most likely source. Biochemical characterization of the three enzymes from the selected clones (amylase, cellulase, and pectinase) showed that they are active in elevated temperatures, high pH, and high salt concentrations. These properties strongly indicate that the evaluated enzymes have the potential to be used for applications in various industrial processes, particularly in biorefinery for lignocellulose biomass conversion.

摘要

极端微生物提供了一种独一无二的酶源,这些酶具有能够耐受将木质纤维素生物质严格工业转化为可发酵糖的特性。然而,这些生物中的大多数在典型培养条件下无法生长这一事实限制了获取这些酶的途径。在本研究中,我们采用功能宏基因组学方法从埃塞俄比亚苏打湖鉴定碳水化合物降解酶,埃塞俄比亚苏打湖是具有高微生物多样性的极端环境。在筛选的21000个克隆中,有408个克隆对五种碳水化合物水解酶呈阳性。纤维素酶和淀粉酶的阳性克隆比例分别高达1:75和1:280。通过对22个选定克隆进行高通量测序并使用定制流程进行生物信息学分析,共鉴定出378个参与复杂碳水化合物降解的基因。约41%的注释基因属于糖苷水解酶(GH)。鉴定出多种GH,表明有潜力从埃塞俄比亚苏打湖发现可用于木质纤维素生物质酶促降解的新型碳水化合物活性酶(CAZyme)。超过73%的注释GH基因与细菌来源相关,其中[具体细菌名称未给出]是最可能的来源。对选定克隆中的三种酶(淀粉酶、纤维素酶和果胶酶)进行生化表征表明,它们在高温、高pH和高盐浓度下具有活性。这些特性强烈表明所评估的酶有潜力用于各种工业过程,特别是在木质纤维素生物质转化的生物精炼中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f89b/9768486/c52137e979db/fmicb-13-1059061-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验