Suppr超能文献

用于制造机械坚固的心脏补片和内皮化心肌芯片应用的非桑蚕丝基墨水

Nonmulberry Silk Based Ink for Fabricating Mechanically Robust Cardiac Patches and Endothelialized Myocardium-on-a-Chip Application.

作者信息

Mehrotra Shreya, de Melo Bruna A G, Hirano Minoru, Keung Wendy, Li Ronald A, Mandal Biman B, Shin Su Ryon

机构信息

Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA.

Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong.

出版信息

Adv Funct Mater. 2020 Mar 17;30(12). doi: 10.1002/adfm.201907436. Epub 2020 Jan 20.

Abstract

Bioprinting holds great promise towards engineering functional cardiac tissue constructs for regenerative medicine and as drug test models. However, it is highly limited by the choice of inks that require maintaining a balance between the structure and functional properties associated with the cardiac tissue. In this regard, we have developed a novel and mechanically robust biomaterial-ink based on non-mulberry silk fibroin protein. The silk-based ink demonstrated suitable mechanical properties required in terms of elasticity and stiffness (~40 kPa) for developing clinically relevant cardiac tissue constructs. The ink allowed the fabrication of stable anisotropic scaffolds using a dual crosslinking method, which were able to support formation of aligned sarcomeres, high expression of gap junction proteins as connexin-43, and maintain synchronously beating of cardiomyocytes. The printed constructs were found to be non-immunogenic and . Furthermore, delving into an innovative method for fabricating a vascularized myocardial tissue-on-a-chip, the silk-based ink was used as supporting hydrogel for encapsulating human induced pluripotent stem cell derived cardiac spheroids (hiPSC-CSs) and creating perfusable vascularized channels via an embedded bioprinting technique. We confirmed the ability of silk-based supporting hydrogel towards maturation and viability of hiPSC-CSs and endothelial cells, and for applications in evaluating drug toxicity.

摘要

生物打印在构建用于再生医学的功能性心脏组织构建体以及作为药物测试模型方面具有巨大潜力。然而,它受到墨水选择的高度限制,这些墨水需要在与心脏组织相关的结构和功能特性之间保持平衡。在这方面,我们基于非桑蚕丝素蛋白开发了一种新型且机械性能强大的生物材料墨水。这种基于丝绸的墨水在弹性和刚度(约40 kPa)方面表现出了开发临床相关心脏组织构建体所需的合适机械性能。该墨水允许使用双重交联方法制造稳定的各向异性支架,这些支架能够支持排列的肌节形成、间隙连接蛋白如连接蛋白-43的高表达,并维持心肌细胞的同步跳动。发现打印的构建体具有非免疫原性。此外,在深入研究一种制造血管化心肌组织芯片的创新方法时,基于丝绸的墨水被用作支持水凝胶,用于封装人诱导多能干细胞衍生的心脏球体(hiPSC-CSs),并通过嵌入式生物打印技术创建可灌注的血管化通道。我们证实了基于丝绸的支持水凝胶对hiPSC-CSs和内皮细胞成熟及存活的能力,以及在评估药物毒性方面的应用。

相似文献

3
3D bioprinting of complex channels within cell-laden hydrogels.细胞负载水凝胶内复杂通道的三维生物打印。
Acta Biomater. 2019 Sep 1;95:214-224. doi: 10.1016/j.actbio.2019.02.038. Epub 2019 Mar 1.
9
3D bioprinted functional and contractile cardiac tissue constructs.3D 生物打印的功能性和收缩性心脏组织构建体。
Acta Biomater. 2018 Apr 1;70:48-56. doi: 10.1016/j.actbio.2018.02.007. Epub 2018 Feb 13.
10
One-Step FRESH Bioprinting of Low-Viscosity Silk Fibroin Inks.一步法 FRESH 生物打印低黏度丝素蛋白墨水。
ACS Biomater Sci Eng. 2022 Jun 13;8(6):2589-2597. doi: 10.1021/acsbiomaterials.2c00269. Epub 2022 May 24.

引用本文的文献

6
Application of human cardiac organoids in cardiovascular disease research.人类心脏类器官在心血管疾病研究中的应用。
Front Cell Dev Biol. 2025 Mar 31;13:1564889. doi: 10.3389/fcell.2025.1564889. eCollection 2025.
7
3D Printing-Based Hydrogel Dressings for Wound Healing.用于伤口愈合的基于3D打印的水凝胶敷料
Adv Sci (Weinh). 2024 Dec;11(47):e2404580. doi: 10.1002/advs.202404580. Epub 2024 Nov 18.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验