Suppr超能文献

有机耕作增强田间作物的防御能力。

Organic Farming Sharpens Plant Defenses in the Field.

作者信息

Krey Karol L, Nabity Paul D, Blubaugh Carmen K, Fu Zhen, Van Leuven James T, Reganold John P, Berim Anna, Gang David R, Jensen Andrew S, Snyder William E

机构信息

Department of Entomology, Washington State University, Pullman, WA, United States.

Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States.

出版信息

Front Sustain Food Syst. 2020 Jul;4. doi: 10.3389/fsufs.2020.00097. Epub 2020 Jul 17.

Abstract

Plants deploy a variety of chemical and physical defenses to protect themselves against herbivores and pathogens. Organic farming seeks to enhance these responses by improving soil quality, ultimately altering bottom up regulation of plant defenses. While laboratory studies suggest this approach is effective, it remains unclear whether organic agriculture encourages more-active plant defenses under real-world conditions. Working on the farms of cooperating growers, we examined gene expression in the leaves of two potato () varieties, grown on organic vs. conventional farms. For one variety, , we found significantly heightened initiation of genes associated with plant-defense pathways in plants grown in organic vs. conventional fields. Organic fields exhibited lower levels of nitrate in soil and of nitrogen in plant foliage, alongside differences in communities of soil bacteria, suggesting possible links between soil management and observed differences in plant defenses. Additionally, numbers of predatory and phloem-feeding insects were higher in organic than conventional fields. A second potato variety, , which is generally grown using fewer inputs and in poorer-quality soils, exhibited lower overall herbivore and predator numbers, few differences in soil ecology, and no differences in gene-activity in organic and conventional farming systems. Altogether, our results suggest that organic farming has the potential to increase plants' resistance to herbivores, possibly facilitating reduced need for insecticide applications. These benefits appear to be mediated by plant variety and/or farming context.

摘要

植物会采用多种化学和物理防御手段来保护自身免受食草动物和病原体的侵害。有机农业旨在通过改善土壤质量来增强这些防御反应,最终改变植物防御的自下而上的调节机制。虽然实验室研究表明这种方法是有效的,但在现实世界条件下,有机农业是否能促进植物更积极的防御仍不清楚。我们在合作种植者的农场开展研究,检测了在有机农场和传统农场种植的两个马铃薯()品种叶片中的基因表达情况。对于其中一个品种,我们发现与种植在有机农田和传统农田中的植物防御途径相关的基因启动显著增强。有机农田土壤中的硝酸盐含量和植物叶片中的氮含量较低,同时土壤细菌群落也存在差异,这表明土壤管理与观察到的植物防御差异之间可能存在联系。此外,有机农田中捕食性昆虫和取食韧皮部的昆虫数量比传统农田中的更多。第二个马铃薯品种,通常种植投入较少且土壤质量较差,其总体食草动物和捕食者数量较少,土壤生态差异不大,在有机和传统种植系统中的基因活性也没有差异。总体而言,我们的结果表明有机农业有可能增强植物对食草动物的抗性,可能有助于减少杀虫剂的使用需求。这些益处似乎由植物品种和/或种植环境介导。

相似文献

1
Organic Farming Sharpens Plant Defenses in the Field.
Front Sustain Food Syst. 2020 Jul;4. doi: 10.3389/fsufs.2020.00097. Epub 2020 Jul 17.
2
Organic Soils Control Beetle Survival While Competitors Limit Aphid Population Growth.
Environ Entomol. 2019 Dec 2;48(6):1323-1330. doi: 10.1093/ee/nvz100.
4
Impact of potato cultivation and cattle farming on physicochemical parameters and enzymatic activities of Neotropical high Andean Páramo ecosystem soils.
Sci Total Environ. 2018 Aug 1;631-632:1600-1610. doi: 10.1016/j.scitotenv.2018.03.137. Epub 2018 Mar 28.
5
Effect of Different Agricultural Farming Practices on Microbial Biomass and Enzyme Activities of Celery Growing Field Soil.
Int J Environ Res Public Health. 2021 Dec 6;18(23):12862. doi: 10.3390/ijerph182312862.
6
Turnover and nestedness drive plant diversity benefits of organic farming from local to landscape scales.
Ecol Appl. 2022 Jun;32(4):e2576. doi: 10.1002/eap.2576. Epub 2022 Apr 10.
7
Farming systems influence the compositional, structural, and functional characteristics of the sugarcane-associated microbiome.
Microbiol Res. 2021 Nov;252:126866. doi: 10.1016/j.micres.2021.126866. Epub 2021 Sep 9.
8
Alternative prey and farming system mediate predation of Colorado potato beetles by generalists.
Pest Manag Sci. 2022 Sep;78(9):3769-3777. doi: 10.1002/ps.6553. Epub 2021 Jul 22.
9
Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape.
PLoS One. 2015 Jun 29;10(6):e0131888. doi: 10.1371/journal.pone.0131888. eCollection 2015.
10
The defensive role of Ni hyperaccumulation by plants: a field experiment.
Am J Bot. 2002 Jun;89(6):998-1003. doi: 10.3732/ajb.89.6.998.

引用本文的文献

1
Metagenomic Insights into the Composition and Function of Microbes Associated with the Rootzone of .
BioTech (Basel). 2022 Jan 14;11(1):1. doi: 10.3390/biotech11010001.
2
Offsetting unabated agricultural emissions with CO2 removal to achieve ambitious climate targets.
PLoS One. 2021 Mar 17;16(3):e0247887. doi: 10.1371/journal.pone.0247887. eCollection 2021.
3
'None of my ancestors ever discussed this disease before!' How disease information shapes adaptive capacity of marginalised rural populations in India.
PLoS Negl Trop Dis. 2021 Mar 11;15(3):e0009265. doi: 10.1371/journal.pntd.0009265. eCollection 2021 Mar.

本文引用的文献

1
The response of the poplar transcriptome to wounding and subsequent infection by a viral pathogen.
New Phytol. 2004 Oct;164(1):123-136. doi: 10.1111/j.1469-8137.2004.01151.x.
2
Organic management promotes natural pest control through altered plant resistance to insects.
Nat Plants. 2020 May;6(5):483-491. doi: 10.1038/s41477-020-0656-9. Epub 2020 May 15.
3
Organic Soils Control Beetle Survival While Competitors Limit Aphid Population Growth.
Environ Entomol. 2019 Dec 2;48(6):1323-1330. doi: 10.1093/ee/nvz100.
4
Direct and Indirect Effects of Host-Plant Fertilization on an Insect Community.
Ecology. 1987 Dec;68(6):1670-1678. doi: 10.2307/1939859.
5
Soil Microbiome Is More Heterogeneous in Organic Than in Conventional Farming System.
Front Microbiol. 2017 Jan 4;7:2064. doi: 10.3389/fmicb.2016.02064. eCollection 2016.
6
Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis.
Curr Protoc Bioinformatics. 2016 Sep 7;55:14.10.1-14.10.91. doi: 10.1002/cpbi.11.
7
Plant Defense against Herbivorous Pests: Exploiting Resistance and Tolerance Traits for Sustainable Crop Protection.
Front Plant Sci. 2016 Jul 29;7:1132. doi: 10.3389/fpls.2016.01132. eCollection 2016.
8
limma powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 2015 Apr 20;43(7):e47. doi: 10.1093/nar/gkv007. Epub 2015 Jan 20.
9
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
10
HTSeq--a Python framework to work with high-throughput sequencing data.
Bioinformatics. 2015 Jan 15;31(2):166-9. doi: 10.1093/bioinformatics/btu638. Epub 2014 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验