Gennari Marcello, Duboc Carole
UMR CNRS 5250, Département de Chimie Moléculaire, Univ. Grenoble Alpes, 38000 Grenoble, France.
Acc Chem Res. 2020 Nov 17;53(11):2753-2761. doi: 10.1021/acs.accounts.0c00555. Epub 2020 Oct 19.
Sulfur-rich metalloproteins and metalloenzymes, containing strongly covalent metal-thiolate (cysteinate) or metal-sulfide bonds in their active site, are ubiquitous in nature. The metal-sulfur motif is a highly versatile tool involved in various biological processes: (i) metal storage, transport, and detoxification; (ii) electron transfer; (iii) activation of the sulfur atom to promote different types of S-based reactions including S-alkylation, S-oxygenation, S-nitrosylation, or disulfide or thiyl radicals formation; (iv) activation of small earth-abundant molecules (such as water, dioxygen, superoxide radical anion, carbon oxides, nitrous oxide, and dinitrogen).This Account describes our investigations carried out during the past 10 years on bio-inspired and biomimetic low-nuclearity complexes containing metal-thiolate bonds. The general objective of these structural, spectroscopic, electrochemical, and catalytic studies was to determine structure-properties-function correlations useful to (i) understanding the peculiar features or the mechanism of the mimicked natural systems and/or (ii) reproducing enzymatic reactivities for specific catalytic applications.By employing a unique highly preorganized NS-donor ligand with two thiolate functions, in combination with different first-row transition metals (Mn, Fe, Co, Ni, Cu, Zn, or V), we got access to a series of bio-inspired sulfur-rich complexes displaying a widespread spectrum of structures, properties, and functions. We isolated a dicopper(I) complex that, for the first time, mimicked concomitantly the key structural, spectroscopic, and redox features of the biological Cu center, a highly efficient electron transfer agent involved in the respiratory enzyme cytochrome oxidase. In the field of sulfur activation, we explored (i) sulfur methylation promoted by a Zn-dithiolate complex that mimics Zn-dependent thiolate alkylation proteins and shows different selectivity compared to the Ni and Co congeners and (ii) a series of Co, Fe, and Mn complexes as the first copper-free systems able to promote thiolate/disulfide interconversion mediated by (de)coordination of halides. Concerning metal-centered reactivity, we investigated two families of metal-thiolate catalysts for small-molecule activation, especially relevant in the fields of sustainable fuel production and energy conversion: (i) two isostructural Mn and Fe dinuclear complexes that activate and reduce dioxygen selectively, either to hydrogen peroxide or water as a function of the experimental conditions; (ii) a family of dinuclear MFe (M = Ni or Fe) hydrogenase mimics active for catalytic H evolution both in organic solution and on modified electrodes in water.This Account thus illustrates how the versatility of thiolate ligation can support selected functions for transition metal complexes, depending on the nature of the metal, the nuclearity of the complex, the presence and type of co-ligands, the second coordination sphere effects, and the experimental conditions.
富含硫的金属蛋白和金属酶在自然界中普遍存在,其活性位点含有强共价金属 - 硫醇盐(半胱氨酸盐)或金属 - 硫化物键。金属 - 硫基序是一种高度通用的工具,参与各种生物过程:(i)金属储存、运输和解毒;(ii)电子转移;(iii)硫原子的活化,以促进不同类型的基于硫的反应,包括S - 烷基化、S - 氧化、S - 亚硝基化或二硫键或硫自由基的形成;(iv)活化地球上储量丰富的小分子(如水、二氧 化碳、超氧自由基阴离子、碳氧化物、一氧化二氮和氮气)。本综述描述了我们在过去10年中对含金属 - 硫醇盐键的生物启发和仿生低核配合物的研究。这些结构、光谱、电化学和催化研究的总体目标是确定结构 - 性质 - 功能的相关性,以(i)理解模拟自然系统的独特特征或机制,和/或(ii)再现用于特定催化应用的酶活性。通过使用具有两个硫醇盐功能的独特的高度预组织化的NS供体配体,结合不同的第一行过渡金属(锰、铁、钴、镍、铜、锌或钒),我们获得了一系列具有广泛结构、性质和功能的生物启发的富含硫的配合物。我们分离出一种二价铜(I)配合物,它首次同时模拟了生物铜中心的关键结构、光谱和氧化还原特征,生物铜中心是参与呼吸酶细胞色素氧化酶的高效电子转移剂。在硫活化领域,我们探索了:(i)由锌 - 二硫醇盐配合物促进的硫甲基化,该配合物模拟锌依赖性硫醇盐烷基化蛋白,与镍和钴的同系物相比显示出不同的选择性;(ii)一系列钴、铁和锰配合物,作为第一个能够通过卤化物的(去)配位介导硫醇盐/二硫键相互转化的无铜体系。关于以金属为中心的反应性,我们研究了两类用于小分子活化的金属 - 硫醇盐催化剂,这在可持续燃料生产和能量转换领域特别重要:(i)两种同构的锰和铁双核配合物,它们根据实验条件选择性地活化和还原二氧 化碳,生成过氧化氢或水;(ii)一类双核MFe(M = 镍或铁)氢化酶模拟物,在有机溶液和水中的修饰电极上均对催化析氢具有活性。因此,本综述说明了硫醇盐配位的多功能性如何根据金属的性质、配合物的核数、共配体的存在和类型、第二配位层效应以及实验条件,支持过渡金属配合物的特定功能。