Suppr超能文献

利用基线PET/CT影像组学的机器学习分析预测人乳头瘤病毒相关口咽鳞状细胞癌放疗后局部区域进展情况

Prediction of post-radiotherapy locoregional progression in HPV-associated oropharyngeal squamous cell carcinoma using machine-learning analysis of baseline PET/CT radiomics.

作者信息

Haider Stefan P, Sharaf Kariem, Zeevi Tal, Baumeister Philipp, Reichel Christoph, Forghani Reza, Kann Benjamin H, Petukhova Alexandra, Judson Benjamin L, Prasad Manju L, Liu Chi, Burtness Barbara, Mahajan Amit, Payabvash Seyedmehdi

机构信息

Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 789 Howard Ave, PO Box 208042, New Haven, CT 06519, United States; Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany.

Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany.

出版信息

Transl Oncol. 2021 Jan;14(1):100906. doi: 10.1016/j.tranon.2020.100906. Epub 2020 Oct 16.

Abstract

Locoregional failure remains a therapeutic challenge in oropharyngeal squamous cell carcinoma (OPSCC). We aimed to devise novel objective imaging biomarkers for prediction of locoregional progression in HPV-associated OPSCC. Following manual lesion delineation, 1037 PET and 1037 CT radiomic features were extracted from each primary tumor and metastatic cervical lymph node on baseline PET/CT scans. Applying random forest machine-learning algorithms, we generated radiomic models for censoring-aware locoregional progression prognostication (evaluated by Harrell's C-index) and risk stratification (evaluated in Kaplan-Meier analysis). A total of 190 patients were included; an optimized model yielded a median (interquartile range) C-index of 0.76 (0.66-0.81; p = 0.01) in prognostication of locoregional progression, using combined PET/CT radiomic features from primary tumors. Radiomics-based risk stratification reliably identified patients at risk for locoregional progression within 2-, 3-, 4-, and 5-year follow-up intervals, with log-rank p-values of p = 0.003, p = 0.001, p = 0.02, p = 0.006 in Kaplan-Meier analysis, respectively. Our results suggest PET/CT radiomic biomarkers can predict post-radiotherapy locoregional progression in HPV-associated OPSCC. Pending validation in large, independent cohorts, such objective biomarkers may improve patient selection for treatment de-intensification trials in this prognostically favorable OPSCC entity, and eventually facilitate personalized therapy.

摘要

局部区域复发仍然是口咽鳞状细胞癌(OPSCC)治疗中的一项挑战。我们旨在设计新的客观影像生物标志物,以预测人乳头瘤病毒(HPV)相关OPSCC的局部区域进展。在手动勾勒病变轮廓后,从基线PET/CT扫描的每个原发性肿瘤和转移性颈部淋巴结中提取了1037个PET和1037个CT影像组学特征。应用随机森林机器学习算法,我们生成了用于审查感知局部区域进展预后(通过Harrell C指数评估)和风险分层(在Kaplan-Meier分析中评估)的影像组学模型。共纳入190例患者;使用原发性肿瘤的PET/CT联合影像组学特征,一个优化模型在局部区域进展预后预测中的C指数中位数(四分位间距)为0.76(0.66 - 0.81;p = 0.01)。基于影像组学的风险分层在2年、3年、4年和5年随访间隔内可靠地识别出有局部区域进展风险的患者,在Kaplan-Meier分析中的对数秩p值分别为p = 0.003、p = 0.001、p = 0.02、p = 0.006。我们的结果表明,PET/CT影像组学生物标志物可以预测HPV相关OPSCC放疗后的局部区域进展。在大型独立队列中进行验证之前,这种客观生物标志物可能会改善对这种预后良好的OPSCC实体进行治疗减强度试验的患者选择,并最终促进个性化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/add1/7568193/b3e93eea7ffe/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验