Suppr超能文献

在低传播环境中发现和验证新发结核病的个体化风险预测因子。

Discovery and validation of a personalized risk predictor for incident tuberculosis in low transmission settings.

机构信息

Institute for Global Health, University College London, London, UK.

Institute of Health Informatics, University College London, London, UK.

出版信息

Nat Med. 2020 Dec;26(12):1941-1949. doi: 10.1038/s41591-020-1076-0. Epub 2020 Oct 19.

Abstract

The risk of tuberculosis (TB) is variable among individuals with latent Mycobacterium tuberculosis infection (LTBI), but validated estimates of personalized risk are lacking. In pooled data from 18 systematically identified cohort studies from 20 countries, including 80,468 individuals tested for LTBI, 5-year cumulative incident TB risk among people with untreated LTBI was 15.6% (95% confidence interval (CI), 8.0-29.2%) among child contacts, 4.8% (95% CI, 3.0-7.7%) among adult contacts, 5.0% (95% CI, 1.6-14.5%) among migrants and 4.8% (95% CI, 1.5-14.3%) among immunocompromised groups. We confirmed highly variable estimates within risk groups, necessitating an individualized approach to risk stratification. Therefore, we developed a personalized risk predictor for incident TB (PERISKOPE-TB) that combines a quantitative measure of T cell sensitization and clinical covariates. Internal-external cross-validation of the model demonstrated a random effects meta-analysis C-statistic of 0.88 (95% CI, 0.82-0.93) for incident TB. In decision curve analysis, the model demonstrated clinical utility for targeting preventative treatment, compared to treating all, or no, people with LTBI. We challenge the current crude approach to TB risk estimation among people with LTBI in favor of our evidence-based and patient-centered method, in settings aiming for pre-elimination worldwide.

摘要

潜伏性结核分枝杆菌感染(LTBI)个体的结核病(TB)风险存在差异,但缺乏经过验证的个体化风险评估。在来自 20 个国家的 18 项系统性识别队列研究的汇总数据中,包括 80468 名 LTBI 检测者,未经治疗的 LTBI 患者在 5 年内发生 TB 的累积发生率为:儿童接触者为 15.6%(95%置信区间[CI],8.0-29.2%);成人接触者为 4.8%(95%CI,3.0-7.7%);移民为 5.0%(95%CI,1.6-14.5%);免疫功能低下者为 4.8%(95%CI,1.5-14.3%)。我们在风险组内证实了高度可变的估计值,这需要对风险分层进行个体化方法。因此,我们开发了一种用于预测 TB 事件的个性化风险预测器(PERISKOPE-TB),该预测器结合了 T 细胞致敏的定量测量和临床协变量。该模型的内部-外部交叉验证显示,TB 事件的随机效应荟萃分析 C 统计量为 0.88(95%CI,0.82-0.93)。在决策曲线分析中,与治疗所有或没有 LTBI 患者相比,该模型在针对预防性治疗方面显示出了临床实用性。我们反对当前在 LTBI 人群中进行 TB 风险评估的粗略方法,而支持我们基于证据和以患者为中心的方法,以在全球范围内达到消除前的目标。

相似文献

引用本文的文献

本文引用的文献

9
A simple, step-by-step guide to interpreting decision curve analysis.解读决策曲线分析的简易分步指南。
Diagn Progn Res. 2019 Oct 4;3:18. doi: 10.1186/s41512-019-0064-7. eCollection 2019.
10
How to perform a meta-analysis with R: a practical tutorial.如何使用 R 进行荟萃分析:实用教程。
Evid Based Ment Health. 2019 Nov;22(4):153-160. doi: 10.1136/ebmental-2019-300117. Epub 2019 Sep 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验