Food and Drug Department, University of Parma , Parma, Italy.
Expert Opin Ther Pat. 2020 Dec;30(12):983-1000. doi: 10.1080/13543776.2020.1839415. Epub 2020 Nov 3.
Microbial resistance is a severe problem for clinical practice due to misuse of antibiotics that promotes the development of surviving strategies by bacteria and fungi. Microbial cells surrounded by a self-produced polymer matrix, defined as biofilms, are inherently more difficult to eradicate. Biofilms endow bacteria with a unique resistance against antibiotics and other anti-microbial agents and play a crucial role in chronic infection.
Biofilm-associated antimicrobial resistance in the lung and wounds. Existing inhaled therapies for treatment of biofilm-associated lung infections. Role of pharmaceutical nanotechnologies to fight resistant microbes and biofilms.
The effectiveness of antibiotics has gradually decreased due to the onset of resistance phenomena. The formation of biofilms represents one of the most important steps in the development of resistance to antimicrobial treatment. The most obvious solution for overcoming this criticality would be the discovery of new antibiotics. However, the number of new molecules with antimicrobial activity brought into clinical development has considerably decreased. In the last decades the development of innovative drug delivery systems, in particular those based on nanotechnological platforms, has represented the most effective and economically affordable approach to optimize the use of available antibiotics, improving their effectiveness profile. AZT: Aztreonam; BAT: Biofilm antibiotic tolerance; CF: Cystic Fibrosis; CIP: Ciprofloxacin; CRS: Chronic Rhinosinusitis; DPPG: 1,2-dipalmytoyl-sn-glycero-3-phosphoglycerol; DSPC: 1,2-distearoyl-sn-glycero-phosphocholine sodium salt; EPS: extracellular polymeric substance; FEV1: Forced Expiratory Volume in the first second; GSNO: S-nitroso-glutathione; LAE: lauroyl arginate ethyl; MIC: Minimum inhibitory Concentration; NCFB: Non-Cystic Fibrosis Bronchiectasis; NTM: Non-Tuberculous Mycobacteria; NTM-LD: Non-tuberculous mycobacteria Lung Disease PA: ; pDMAEMA: poly(dimethylaminoethyl methacrylate);pDMAEMA-co-PAA-co-BMA: poly(dimethylaminoethyl methacrylate)-co-propylacrylic acid-co-butyl methacrylate; PEG: polyethylene glycol; PEGDMA: polyethylene glycol dimethacrylate;PCL: Poly-ε-caprolactone; PLA: poly-lactic acid; PLGA: poly-lactic-co-glycolic acid; PVA: poli-vinyl alcohol; SA: ; TIP: Tobramycin Inhalation Powder; TIS: Tobramycin Inhalation Solution; TPP: Tripolyphosphate.
由于抗生素的滥用促进了细菌和真菌产生生存策略,微生物耐药性是临床实践中的一个严重问题。由细菌自身产生的聚合物基质包围的微生物细胞被定义为生物膜,它们更难被清除。生物膜使细菌具有对抗生素和其他抗菌剂的独特耐药性,并在慢性感染中发挥关键作用。
肺部和伤口中与生物膜相关的抗生素耐药性。现有的吸入疗法治疗与生物膜相关的肺部感染。制药纳米技术在对抗耐药微生物和生物膜方面的作用。
由于耐药现象的出现,抗生素的有效性逐渐降低。生物膜的形成是对抗抗菌治疗产生耐药性的最重要步骤之一。克服这一关键问题最明显的解决方案将是发现新的抗生素。然而,具有抗菌活性的新分子进入临床开发的数量已经大大减少。在过去几十年中,创新药物输送系统的发展,特别是基于纳米技术平台的药物输送系统的发展,一直是优化现有抗生素使用、改善其有效性的最有效和经济实惠的方法。AZT:氨曲南;BAT:生物膜抗生素耐药性;CF:囊性纤维化;CIP:环丙沙星;CRS:慢性鼻鼻窦炎;DPPG:1,2-二月桂酰基-sn-甘油-3-磷酸甘油;DSPC:1,2-二硬脂酰基-sn-甘油-磷酸胆碱钠盐;EPS:细胞外聚合物;FEV1:第一秒用力呼气量;GSNO:S-亚硝基谷胱甘肽;LAE:精氨酸乙酯;MIC:最小抑菌浓度;NCFB:非囊性纤维化支气管扩张症;NTM:非结核分枝杆菌;NTM-LD:非结核分枝杆菌肺病;PA:;pDMAEMA:聚(二甲基氨基乙基甲基丙烯酸酯);pDMAEMA-co-PAA-co-BMA:聚(二甲基氨基乙基甲基丙烯酸酯)-co-丙酸丙酯-co-丁基甲基丙烯酸酯;PEG:聚乙二醇;PEGDMA:聚乙二醇二甲基丙烯酸酯;PCL:聚-ε-己内酯;PLA:聚乳酸;PLGA:聚乳酸-共-羟基乙酸;PVA:聚乙烯醇;SA:;TIP:妥布霉素吸入粉;TIS:妥布霉素吸入溶液;TPP:三聚磷酸。