文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

数值模拟作为通过电刺激定制用于软骨组织工程的导电水凝胶的手段。

Numerical Simulations as Means for Tailoring Electrically Conductive Hydrogels Towards Cartilage Tissue Engineering by Electrical Stimulation.

机构信息

Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany.

Institute of Biomaterials, Friedrich Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany.

出版信息

Molecules. 2020 Oct 16;25(20):4750. doi: 10.3390/molecules25204750.


DOI:10.3390/molecules25204750
PMID:33081205
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7587583/
Abstract

Cartilage regeneration is a clinical challenge. In recent years, hydrogels have emerged as implantable scaffolds in cartilage tissue engineering. Similarly, electrical stimulation has been employed to improve matrix synthesis of cartilage cells, and thus to foster engineering and regeneration of cartilage tissue. The combination of hydrogels and electrical stimulation may pave the way for new clinical treatment of cartilage lesions. To find the optimal electric properties of hydrogels, theoretical considerations and corresponding numerical simulations are needed to identify well-suited initial parameters for experimental studies. We present the theoretical analysis of a hydrogel in a frequently used electrical stimulation device for cartilage regeneration and tissue engineering. By means of equivalent circuits, finite element analysis, and uncertainty quantification, we elucidate the influence of the geometric and dielectric properties of cell-seeded hydrogels on the capacitive-coupling electrical field stimulation. Moreover, we discuss the possibility of cellular organisation inside the hydrogel due to forces generated by the external electric field. The introduced methodology is easily reusable by other researchers and allows to directly develop novel electrical stimulation study designs. Thus, this study paves the way for the design of future experimental studies using electrically conductive hydrogels and electrical stimulation for tissue engineering.

摘要

软骨再生是一个临床挑战。近年来,水凝胶作为可植入支架在软骨组织工程中崭露头角。类似地,电刺激也被用于提高软骨细胞的基质合成,从而促进软骨组织的工程和再生。水凝胶和电刺激的结合可能为软骨损伤的新临床治疗铺平道路。为了找到水凝胶的最佳电学性质,需要理论考虑和相应的数值模拟来确定实验研究的合适初始参数。我们提出了一种在软骨再生和组织工程中常用的电刺激装置中水凝胶的理论分析。通过等效电路、有限元分析和不确定性量化,我们阐明了细胞接种水凝胶的几何和介电性质对电容耦合电场刺激的影响。此外,我们还讨论了由于外部电场产生的力,细胞在水凝胶内组织的可能性。所引入的方法很容易被其他研究人员重复使用,并允许直接开发新的电刺激研究设计。因此,这项研究为使用导电水凝胶和电刺激进行组织工程的未来实验研究设计铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d504/7587583/243c00d3bdb4/molecules-25-04750-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d504/7587583/4097b78b354e/molecules-25-04750-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d504/7587583/a581b3e08fbc/molecules-25-04750-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d504/7587583/dad62574c90c/molecules-25-04750-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d504/7587583/7eec1123d9af/molecules-25-04750-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d504/7587583/13bb465bdd66/molecules-25-04750-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d504/7587583/c4dd72751429/molecules-25-04750-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d504/7587583/243c00d3bdb4/molecules-25-04750-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d504/7587583/4097b78b354e/molecules-25-04750-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d504/7587583/a581b3e08fbc/molecules-25-04750-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d504/7587583/dad62574c90c/molecules-25-04750-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d504/7587583/7eec1123d9af/molecules-25-04750-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d504/7587583/13bb465bdd66/molecules-25-04750-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d504/7587583/c4dd72751429/molecules-25-04750-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d504/7587583/243c00d3bdb4/molecules-25-04750-g007.jpg

相似文献

[1]
Numerical Simulations as Means for Tailoring Electrically Conductive Hydrogels Towards Cartilage Tissue Engineering by Electrical Stimulation.

Molecules. 2020-10-16

[2]
Electrically conductive coatings in tissue engineering.

Acta Biomater. 2024-9-15

[3]
Numerical Simulation of Electroactive Hydrogels for Cartilage-Tissue Engineering.

Materials (Basel). 2019-9-9

[4]
Computational study on electromechanics of electroactive hydrogels for cartilage-tissue repair.

Comput Methods Programs Biomed. 2020-12

[5]
Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions.

Biomacromolecules. 2016-11-14

[6]
Establishment of a New Device for Electrical Stimulation of Non-Degenerative Cartilage Cells In Vitro.

Int J Mol Sci. 2021-1-1

[7]
Tissue regeneration properties of hydrogels derived from biological macromolecules: A review.

Int J Biol Macromol. 2024-6

[8]
Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering.

J Tissue Eng Regen Med. 2011-1-10

[9]
Capacitive-Coupling-Responsive Hydrogel Scaffolds Offering Wireless In Situ Electrical Stimulation Promotes Nerve Regeneration.

Adv Mater. 2024-4

[10]
Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies.

Acta Biomater. 2015-11-24

引用本文的文献

[1]
Electrical stimulation for cartilage tissue engineering - A critical review from an engineer's perspective.

Heliyon. 2024-9-23

[2]
Electrically Conductive Hydrogels for Articular Cartilage Tissue Engineering.

Gels. 2022-11-3

[3]
Strategies for Biomaterial-Based Spinal Cord Injury Repair the TLR4-NF-κB Signaling Pathway.

Front Bioeng Biotechnol. 2022-4-29

[4]
Bizonal cardiac engineered tissues with differential maturation features in a mid-throughput multimodal bioreactor.

iScience. 2022-4-26

[5]
Using a Digital Twin of an Electrical Stimulation Device to Monitor and Control the Electrical Stimulation of Cells .

Front Bioeng Biotechnol. 2021-12-8

本文引用的文献

[1]
Numerical study on the effect of capacitively coupled electrical stimulation on biological cells considering model uncertainties.

Sci Rep. 2022-3-18

[2]
Designing Porous Bone Tissue Engineering Scaffolds with Enhanced Mechanical Properties from Composite Hydrogels Composed of Modified Alginate, Gelatin, and Bioactive Glass.

ACS Biomater Sci Eng. 2016-12-12

[3]
Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid - Gelatin injectable hydrogels.

Bioelectrochemistry. 2020-8

[4]
Importance of Osmolarity and Oxygen Tension for Cartilage Tissue Engineering.

Biores Open Access. 2020-3-31

[5]
Thermal ablation of biological tissues in disease treatment: A review of computational models and future directions.

Electromagn Biol Med. 2020-4-2

[6]
Scaffold channel size influences stem cell differentiation pathway in 3-D printed silica hybrid scaffolds for cartilage regeneration.

Biomater Sci. 2020-8-21

[7]
Numerical simulation of the electric field distribution in an electrical stimulation device for scaffolds settled with cartilaginous cells.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

[8]
Requirements for Documenting Electrical Cell Stimulation Experiments for Replicability and Numerical Modeling.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

[9]
Design, fabrication and testing of an electrical cell stimulation and recording apparatus (ECSARA) for cells in electroculture.

Biosens Bioelectron. 2019-10-20

[10]
Re-Differentiation Capacity of Human Chondrocytes in Vitro Following Electrical Stimulation with Capacitively Coupled Fields.

J Clin Med. 2019-10-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索