考虑模型不确定性的电容耦合电刺激对生物细胞影响的数值研究。

Numerical study on the effect of capacitively coupled electrical stimulation on biological cells considering model uncertainties.

机构信息

Institute of General Electrical Engineering, University of Rostock, 18051, Rostock, Germany.

Institute of Physics, University of Rostock, 18059, Rostock, Germany.

出版信息

Sci Rep. 2022 Mar 18;12(1):4744. doi: 10.1038/s41598-022-08279-w.

Abstract

Electrical stimulation of biological samples such as tissues and cell cultures attracts growing attention due to its capability of enhancing cell activity, proliferation, and differentiation. Eventually, a profound knowledge of the underlying mechanisms paves the way for innovative therapeutic devices. Capacitive coupling is one option of delivering electric fields to biological samples that has advantages regarding biocompatibility. However, its biological mechanism of interaction is not well understood. Experimental findings could be related to voltage-gated channels, which are triggered by changes of the transmembrane potential. Numerical simulations by the finite element method provide a possibility to estimate the transmembrane potential. Since a full resolution of the cell membrane within a macroscopic model would lead to prohibitively expensive models, we suggest the adaptation of an approximate finite element method. Starting from a basic 2.5D model, the chosen method is validated and applied to realistic experimental situations. To understand the influence of the dielectric properties on the modelling outcome, uncertainty quantification techniques are employed. A frequency-dependent influence of the uncertain dielectric properties of the cell membrane on the modelling outcome is revealed. This may have practical implications for future experimental studies. Our methodology can be easily adapted for computational studies relying on experimental data.

摘要

由于电刺激能够增强细胞活性、增殖和分化,因此对生物样本(如组织和细胞培养物)进行电刺激的研究越来越受到关注。深入了解其潜在机制为创新治疗设备铺平了道路。电容耦合是向生物样本传递电场的一种选择,它具有良好的生物相容性。然而,其相互作用的生物学机制尚不清楚。实验结果可能与电压门控通道有关,这些通道会因跨膜电位的变化而被触发。有限元方法的数值模拟提供了一种估计跨膜电位的可能性。由于在宏观模型中完全解析细胞膜会导致模型过于昂贵,因此我们建议采用近似有限元方法。从基本的 2.5D 模型开始,所选择的方法得到了验证,并应用于现实的实验情况。为了了解介电特性对建模结果的影响,我们采用了不确定性量化技术。结果表明,细胞膜的不确定介电特性对建模结果具有频率依赖性影响。这可能对未来的实验研究具有实际意义。我们的方法可以很容易地应用于基于实验数据的计算研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8036/8933463/6cd759e07106/41598_2022_8279_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索