Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany.
Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany.
Int J Mol Sci. 2021 Jan 1;22(1):394. doi: 10.3390/ijms22010394.
In cell-based therapies for cartilage lesions, the main problem is still the formation of fibrous cartilage, caused by underlying de-differentiation processes ex vivo. Biophysical stimulation is a promising approach to optimize cell-based procedures and to adapt them more closely to physiological conditions. The occurrence of mechano-electrical transduction phenomena within cartilage tissue is physiological and based on streaming and diffusion potentials. The application of exogenous electric fields can be used to mimic endogenous fields and, thus, support the differentiation of chondrocytes in vitro. For this purpose, we have developed a new device for electrical stimulation of chondrocytes, which operates on the basis of capacitive coupling of alternating electric fields. The reusable and sterilizable stimulation device allows the simultaneous use of 12 cavities with independently applicable fields using only one main supply. The first parameter settings for the stimulation of human non-degenerative chondrocytes, seeded on collagen type I elastin-based scaffolds, were derived from numerical electric field simulations. Our first results suggest that applied alternating electric fields induce chondrogenic re-differentiation at the gene and especially at the protein level of human de-differentiated chondrocytes in a frequency-dependent manner. In future studies, further parameter optimizations will be performed to improve the differentiation capacity of human cartilage cells.
在基于细胞的软骨损伤治疗中,主要问题仍然是体外去分化过程导致的纤维软骨形成。生物物理刺激是优化基于细胞的治疗方法并使其更接近生理条件的一种很有前途的方法。在软骨组织中发生的机电转换现象是生理的,基于流动和扩散电位。外源性电场的应用可用于模拟内源性电场,从而支持体外软骨细胞的分化。为此,我们开发了一种用于刺激软骨细胞的新型电刺激装置,该装置基于交变电场的电容耦合运行。这种可重复使用和可消毒的刺激装置允许仅使用一个主电源同时使用 12 个具有独立应用场的腔。根据数值电场模拟得出了用于刺激接种在 I 型胶原蛋白弹性蛋白基支架上的非退变人类软骨细胞的初始刺激参数设置。我们的初步结果表明,施加的交变电场以频率依赖的方式诱导去分化的人类软骨细胞在基因水平,特别是在蛋白质水平上发生软骨形成再分化。在未来的研究中,将进一步优化参数以提高人类软骨细胞的分化能力。