Pharmacy Department (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.
Experimental Medicine Department (DIMES), University of Genova, Via De Toni, 14, 16132 Genova, Italy.
Open Biol. 2020 Oct;10(10):200224. doi: 10.1098/rsob.200224. Epub 2020 Oct 21.
Most of the ATP to satisfy the energetic demands of the cell is produced by the FF-ATP synthase (ATP synthase) which can also function outside the mitochondria. Active oxidative phosphorylation (OxPhos) was shown to operate in the photoreceptor outer segment, myelin sheath, exosomes, microvesicles, cell plasma membranes and platelets. The mitochondria would possess the exclusive ability to assemble the OxPhos molecular machinery so to share it with the endoplasmic reticulum (ER) and eventually export the ability to aerobically synthesize ATP in true extra-mitochondrial districts. The ER lipid rafts expressing OxPhos components is indicative of the close contact of the two organelles, bearing different evolutionary origins, to maximize the OxPhos efficiency, exiting in molecular transfer from the mitochondria to the ER. This implies that its malfunctioning could trigger a generalized oxidative stress. This is consistent with the most recent interpretations of the evolutionary symbiotic process whose necessary prerequisite appears to be the presence of the internal membrane system inside the eukaryote precursor, of probable archaeal origin allowing the engulfing of the α-proteobacterial precursor of mitochondria. The process of OxPhos in myelin is here studied in depth. A model is provided contemplating the biface arrangement of the nanomotor ATP synthase in the myelin sheath.
大多数满足细胞能量需求的 ATP 是由 FF-ATP 合酶(ATP 合酶)产生的,该合酶也可以在线粒体之外发挥作用。已证明活性氧化磷酸化(OxPhos)在光感受器外节、髓鞘、外泌体、微泡、细胞质膜和血小板中起作用。线粒体将拥有组装 OxPhos 分子机器的独特能力,以便与内质网(ER)共享,并最终在真正的线粒体外区域中具有有氧合成 ATP 的能力。表达 OxPhos 成分的 ER 脂筏表明两个细胞器之间的密切接触,它们具有不同的进化起源,以最大限度地提高 OxPhos 效率,从线粒体到 ER 进行分子转移。这意味着其功能障碍可能引发全身性氧化应激。这与进化共生过程的最新解释一致,其必要前提似乎是真核生物前体内部膜系统的存在,可能来自古细菌,允许线粒体的α-变形菌前体的吞噬。本文深入研究了髓鞘中 OxPhos 的过程。提供了一个模型,考虑了纳米马达 ATP 合酶在髓鞘中的双面排列。