Suppr超能文献

有氧线粒体 ATP 合成的全面观点。

The aerobic mitochondrial ATP synthesis from a comprehensive point of view.

机构信息

Pharmacy Department (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.

Experimental Medicine Department (DIMES), University of Genova, Via De Toni, 14, 16132 Genova, Italy.

出版信息

Open Biol. 2020 Oct;10(10):200224. doi: 10.1098/rsob.200224. Epub 2020 Oct 21.

Abstract

Most of the ATP to satisfy the energetic demands of the cell is produced by the FF-ATP synthase (ATP synthase) which can also function outside the mitochondria. Active oxidative phosphorylation (OxPhos) was shown to operate in the photoreceptor outer segment, myelin sheath, exosomes, microvesicles, cell plasma membranes and platelets. The mitochondria would possess the exclusive ability to assemble the OxPhos molecular machinery so to share it with the endoplasmic reticulum (ER) and eventually export the ability to aerobically synthesize ATP in true extra-mitochondrial districts. The ER lipid rafts expressing OxPhos components is indicative of the close contact of the two organelles, bearing different evolutionary origins, to maximize the OxPhos efficiency, exiting in molecular transfer from the mitochondria to the ER. This implies that its malfunctioning could trigger a generalized oxidative stress. This is consistent with the most recent interpretations of the evolutionary symbiotic process whose necessary prerequisite appears to be the presence of the internal membrane system inside the eukaryote precursor, of probable archaeal origin allowing the engulfing of the α-proteobacterial precursor of mitochondria. The process of OxPhos in myelin is here studied in depth. A model is provided contemplating the biface arrangement of the nanomotor ATP synthase in the myelin sheath.

摘要

大多数满足细胞能量需求的 ATP 是由 FF-ATP 合酶(ATP 合酶)产生的,该合酶也可以在线粒体之外发挥作用。已证明活性氧化磷酸化(OxPhos)在光感受器外节、髓鞘、外泌体、微泡、细胞质膜和血小板中起作用。线粒体将拥有组装 OxPhos 分子机器的独特能力,以便与内质网(ER)共享,并最终在真正的线粒体外区域中具有有氧合成 ATP 的能力。表达 OxPhos 成分的 ER 脂筏表明两个细胞器之间的密切接触,它们具有不同的进化起源,以最大限度地提高 OxPhos 效率,从线粒体到 ER 进行分子转移。这意味着其功能障碍可能引发全身性氧化应激。这与进化共生过程的最新解释一致,其必要前提似乎是真核生物前体内部膜系统的存在,可能来自古细菌,允许线粒体的α-变形菌前体的吞噬。本文深入研究了髓鞘中 OxPhos 的过程。提供了一个模型,考虑了纳米马达 ATP 合酶在髓鞘中的双面排列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb34/7653358/b8ac4be8273f/rsob-10-200224-g1.jpg

相似文献

1
The aerobic mitochondrial ATP synthesis from a comprehensive point of view.
Open Biol. 2020 Oct;10(10):200224. doi: 10.1098/rsob.200224. Epub 2020 Oct 21.
3
Efficient extra-mitochondrial aerobic ATP synthesis in neuronal membrane systems.
J Neurosci Res. 2021 Sep;99(9):2250-2260. doi: 10.1002/jnr.24865. Epub 2021 Jun 3.
4
Evaluation of the Acquisition of the Aerobic Metabolic Capacity by Myelin, during its Development.
Mol Neurobiol. 2016 Dec;53(10):7048-7056. doi: 10.1007/s12035-015-9575-6. Epub 2015 Dec 16.
5
Is myelin a mitochondrion?
J Cereb Blood Flow Metab. 2013 Jan;33(1):33-6. doi: 10.1038/jcbfm.2012.148. Epub 2012 Oct 17.
6
Oxidative stress in myelin sheath: The other face of the extramitochondrial oxidative phosphorylation ability.
Free Radic Res. 2015;49(9):1156-64. doi: 10.3109/10715762.2015.1050962. Epub 2015 Jun 4.
7
Functional Expression of Electron Transport Chain and FoF1-ATP Synthase in Optic Nerve Myelin Sheath.
Neurochem Res. 2015 Nov;40(11):2230-41. doi: 10.1007/s11064-015-1712-0. Epub 2015 Sep 3.
8
Tricarboxylic acid cycle-sustained oxidative phosphorylation in isolated myelin vesicles.
Biochimie. 2013 Nov;95(11):1991-8. doi: 10.1016/j.biochi.2013.07.003. Epub 2013 Jul 12.
10
Support of Nerve Conduction by Respiring Myelin Sheath: Role of Connexons.
Mol Neurobiol. 2016 May;53(4):2468-79. doi: 10.1007/s12035-015-9216-0. Epub 2015 Jun 2.

引用本文的文献

1
Physiology of Oligodendroglia.
Adv Neurobiol. 2025;43:125-153. doi: 10.1007/978-3-031-87919-7_6.
2
Morphology of Oligodendroglial Cells.
Adv Neurobiol. 2025;43:97-123. doi: 10.1007/978-3-031-87919-7_5.
4
Molecular Alterations in Core Subunits of Mitochondrial Complex I and Their Relation to Parkinson's Disease.
Mol Neurobiol. 2025 Jun;62(6):6968-6982. doi: 10.1007/s12035-024-04526-5. Epub 2024 Sep 27.
5
The Unexplored Role of Mitochondria-Related Oxidative Stress in Diverticular Disease.
Int J Mol Sci. 2024 Sep 6;25(17):9680. doi: 10.3390/ijms25179680.
7
Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions.
Antioxidants (Basel). 2023 Nov 29;12(12):2056. doi: 10.3390/antiox12122056.
9
Epigenetic Alterations under Oxidative Stress in Stem Cells.
Oxid Med Cell Longev. 2022 Aug 29;2022:6439097. doi: 10.1155/2022/6439097. eCollection 2022.
10

本文引用的文献

1
Isothermal Environmental Heat Energy Utilization by Transmembrane Electrostatically Localized Protons at the Liquid-Membrane Interface.
ACS Omega. 2020 Jul 9;5(28):17385-17395. doi: 10.1021/acsomega.0c01768. eCollection 2020 Jul 21.
2
Protonic Capacitor: Elucidating the biological significance of mitochondrial cristae formation.
Sci Rep. 2020 Jun 29;10(1):10304. doi: 10.1038/s41598-020-66203-6.
4
The archaeal-bacterial lipid divide, could a distinct lateral proton route hold the answer?
Biol Direct. 2020 Apr 21;15(1):7. doi: 10.1186/s13062-020-00262-7.
5
Electrostatically localized proton bioenergetics: better understanding membrane potential.
Heliyon. 2019 Jul 18;5(7):e01961. doi: 10.1016/j.heliyon.2019.e01961. eCollection 2019 Jul.
6
Analysis of Correlated Dynamics in the Grotthuss Mechanism of Proton Diffusion.
J Phys Chem B. 2019 Jul 5;123(26):5536-5544. doi: 10.1021/acs.jpcb.9b02610. Epub 2019 Jun 21.
8
ER-mitochondria interactions: Both strength and weakness within cancer cells.
Biochim Biophys Acta Mol Cell Res. 2019 Apr;1866(4):650-662. doi: 10.1016/j.bbamcr.2019.01.009. Epub 2019 Jan 19.
9
The Interface Between ER and Mitochondria: Molecular Compositions and Functions.
Mol Cells. 2018 Dec 31;41(12):1000-1007. doi: 10.14348/molcells.2018.0438. Epub 2018 Dec 12.
10
Role of Mitochondria-Associated ER Membranes in Calcium Regulation in Cancer-Specific Settings.
Neoplasia. 2018 May;20(5):510-523. doi: 10.1016/j.neo.2018.03.005. Epub 2018 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验