Suppr超能文献

静电定位质子生物能学:更好地理解膜电位

Electrostatically localized proton bioenergetics: better understanding membrane potential.

作者信息

Lee James Weifu

机构信息

Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529 USA.

出版信息

Heliyon. 2019 Jul 18;5(7):e01961. doi: 10.1016/j.heliyon.2019.e01961. eCollection 2019 Jul.

Abstract

In Mitchell's chemiosmotic theory, membrane potential was given as the electric potential difference across the membrane. However, its physical origin for membrane potential was not well explained. Using the Lee proton electrostatic localization model with a newly formulated equation for protonic motive force (pmf) that takes electrostatically localized protons into account, membrane potential has now been better understood as the voltage difference contributed by the localized surface charge density at the liquid-membrane interface as in an electrostatically localized protons/cations-membrane-anions capacitor. That is, the origin of membrane potential is now better understood as the electrostatic formation of the localized surface charge density that is the sum of the electrostatically localized proton concentration and the localized non-proton cations density at the liquid membrane interface. The total localized surface charge density equals to the ideal localized proton population density before the cation-proton exchange process; since the cation-proton exchange process does not change the total localized charges density, neither does it change to the membrane potential . The localized proton concentration represents the dominant component, which accounts about 78% of the total localized surface charge density at the cation-proton exchange equilibrium state in animal mitochondria. Liquid water as a protonic conductor may play a significant role in the biological activities of membrane potential formation and utilization.

摘要

在米切尔的化学渗透理论中,膜电位被定义为跨膜的电势差。然而,其膜电位的物理起源并未得到很好的解释。使用李质子静电定位模型以及一个新制定的考虑了静电定位质子的质子动力(pmf)方程,现在膜电位被更好地理解为液 - 膜界面处由局部表面电荷密度贡献的电压差,就如同在一个静电定位质子/阳离子 - 膜 - 阴离子电容器中一样。也就是说,膜电位的起源现在被更好地理解为局部表面电荷密度的静电形成,它是液膜界面处静电定位质子浓度与局部非质子阳离子密度之和。总局部表面电荷密度等于阳离子 - 质子交换过程之前的理想局部质子种群密度;由于阳离子 - 质子交换过程不会改变总局部电荷密度,所以它也不会改变膜电位 。局部质子浓度 代表主要成分,在动物线粒体的阳离子 - 质子交换平衡状态下,它约占总局部表面电荷密度的78%。液态水作为质子导体可能在膜电位形成和利用的生物活动中发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d1a/6646885/fe2d4105a37d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验