Ayasreh Sàlem, Jurado Imanol, López-León Clara F, Montalà-Flaquer Marc, Soriano Jordi
Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain.
Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain.
Micromachines (Basel). 2022 Dec 19;13(12):2259. doi: 10.3390/mi13122259.
There is a growing technological interest in combining biological neuronal networks with electronic ones, specifically for biological computation, human-machine interfacing and robotic implants. A major challenge for the development of these technologies is the resilience of the biological networks to physical damage, for instance, when used in harsh environments. To tackle this question, here, we investigated the dynamic and functional alterations of rodent cortical networks grown in vitro that were physically damaged, either by sequentially removing groups of neurons that were central for information flow or by applying an incision that cut the network in half. In both cases, we observed a remarkable capacity of the neuronal cultures to cope with damage, maintaining their activity and even reestablishing lost communication pathways. We also observed-particularly for the cultures cut in half-that a reservoir of healthy neurons surrounding the damaged region could boost resilience by providing stimulation and a communication bridge across disconnected areas. Our results show the remarkable capacity of neuronal cultures to sustain and recover from damage, and may be inspirational for the development of future hybrid biological-electronic systems.
将生物神经网络与电子神经网络相结合,特别是用于生物计算、人机接口和机器人植入,这一技术领域正引发越来越多的关注。这些技术发展面临的一个主要挑战是生物网络对物理损伤的恢复能力,例如在恶劣环境中使用时。为了解决这个问题,我们在此研究了体外培养的啮齿动物皮质网络在受到物理损伤时的动态和功能变化,损伤方式包括依次移除信息流核心神经元组或进行切口将网络一分为二。在这两种情况下,我们都观察到神经元培养物应对损伤的显著能力,它们能维持自身活动,甚至重新建立失去的通信通路。我们还观察到——尤其是对于被切成两半的培养物——受损区域周围的健康神经元库可以通过提供刺激和跨越断开区域的通信桥梁来增强恢复能力。我们的结果显示了神经元培养物承受损伤并从损伤中恢复的显著能力,这可能会为未来混合生物 - 电子系统的发展提供启发。