Suppr超能文献

人口健康人工智能研究人员对人工智能公众形象的看法:一项试点研究。

Population health AI researchers' perceptions of the public portrayal of AI: A pilot study.

机构信息

King's College London, UK.

University of Lancaster, UK.

出版信息

Public Underst Sci. 2021 Feb;30(2):196-211. doi: 10.1177/0963662520965490. Epub 2020 Oct 21.

Abstract

This article reports how 18 UK and Canadian population health artificial intelligence researchers in Higher Education Institutions perceive the use of artificial intelligence systems in their research, and how this compares with their perceptions about the media portrayal of artificial intelligence systems. This is triangulated with a small scoping analysis of how UK and Canadian news articles portray artificial intelligence systems associated with health research and care. Interviewees had concerns about what they perceived as sensationalist reporting of artificial intelligence systems - a finding reflected in the media analysis. In line with Pickersgill's concept of 'epistemic modesty', they considered artificial intelligence systems better perceived as non-exceptionalist methodological tools that were uncertain and unexciting. Adopting 'epistemic modesty' was sometimes hindered by stakeholders to whom the research is disseminated, who may be less interested in hearing about the uncertainties of scientific practice, having implications on both research and policy.

摘要

本文报道了 18 名在高等教育机构工作的英国和加拿大人口健康人工智能研究人员如何看待人工智能系统在其研究中的应用,以及这与他们对媒体对人工智能系统描述的看法有何不同。这与对英国和加拿大新闻文章如何描述与健康研究和护理相关的人工智能系统的小型范围分析进行了三角剖分。受访者对他们认为是对人工智能系统耸人听闻的报道表示担忧——这一发现反映在媒体分析中。根据皮克希尔的“知识谦逊”概念,他们认为人工智能系统最好被视为不确定且不令人兴奋的非例外主义方法工具。采用“知识谦逊”有时会受到向其传播研究的利益相关者的阻碍,他们可能不太愿意听到科学实践不确定性的情况,这对研究和政策都有影响。

相似文献

1
Population health AI researchers' perceptions of the public portrayal of AI: A pilot study.
Public Underst Sci. 2021 Feb;30(2):196-211. doi: 10.1177/0963662520965490. Epub 2020 Oct 21.
9
Advocating for population health: The role of public health practitioners in the age of artificial intelligence.
Can J Public Health. 2024 Jun;115(3):473-476. doi: 10.17269/s41997-024-00881-x. Epub 2024 Apr 16.
10
General Practitioners' Attitudes Toward Artificial Intelligence-Enabled Systems: Interview Study.
J Med Internet Res. 2022 Jan 27;24(1):e28916. doi: 10.2196/28916.

引用本文的文献

1
Generative AI and academic scientists in US universities: Perception, experience, and adoption intentions.
PLoS One. 2025 Aug 28;20(8):e0330416. doi: 10.1371/journal.pone.0330416. eCollection 2025.
3
Expert views about missing AI narratives: is there an AI story crisis?
AI Soc. 2022 Aug 25:1-20. doi: 10.1007/s00146-022-01548-2.
5
Boundaries Between Research Ethics and Ethical Research Use in Artificial Intelligence Health Research.
J Empir Res Hum Res Ethics. 2021 Jul;16(3):325-337. doi: 10.1177/15562646211002744. Epub 2021 Mar 18.

本文引用的文献

2
Can digital data diagnose mental health problems? A sociological exploration of 'digital phenotyping'.
Sociol Health Illn. 2020 Nov;42(8):1873-1887. doi: 10.1111/1467-9566.13175. Epub 2020 Sep 11.
6
Deep Ethical Learning: Taking the Interplay of Human and Artificial Intelligence Seriously.
Hastings Cent Rep. 2019 Jan;49(1):36-39. doi: 10.1002/hast.977.
7
The practical implementation of artificial intelligence technologies in medicine.
Nat Med. 2019 Jan;25(1):30-36. doi: 10.1038/s41591-018-0307-0. Epub 2019 Jan 7.
8
Identifying facial phenotypes of genetic disorders using deep learning.
Nat Med. 2019 Jan;25(1):60-64. doi: 10.1038/s41591-018-0279-0. Epub 2019 Jan 7.
9
Influenza vaccination discourse in major Canadian news media, 2017-2018.
Heliyon. 2018 Nov 27;4(11):e00970. doi: 10.1016/j.heliyon.2018.e00970. eCollection 2018 Nov.
10
Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology.
Can Assoc Radiol J. 2018 May;69(2):120-135. doi: 10.1016/j.carj.2018.02.002. Epub 2018 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验