Suppr超能文献

雄激素受体机器学习模型的比较。

Comparison of Machine Learning Models for the Androgen Receptor.

机构信息

Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States.

Global Product Safety, SC Johnson and Son, Inc., Racine, Wisconsin 53404, United States.

出版信息

Environ Sci Technol. 2020 Nov 3;54(21):13690-13700. doi: 10.1021/acs.est.0c03984. Epub 2020 Oct 21.

Abstract

The androgen receptor (AR) is a target of interest for endocrine disruption research, as altered signaling can affect normal reproductive and neurological development for generations. In an effort to prioritize compounds with alternative methodologies, the U.S. Environmental Protection Agency (EPA) used data from 11 assays to construct models of AR agonist and antagonist signaling pathways. While these EPA ToxCast AR models require data to assign a bioactivity score, Bayesian machine learning methods can be used for prospective prediction from molecule structure alone. This approach was applied to multiple types of data corresponding to the EPA's AR signaling pathway with proprietary software, Assay Central. The training performance of all machine learning models, including six other algorithms, was evaluated by internal 5-fold cross-validation statistics. Bayesian machine learning models were also evaluated with external predictions of reference chemicals to compare prediction accuracies to published results from the EPA. The machine learning model group selected for further studies of endocrine disruption consisted of continuous AC data from the February 2019 release of ToxCast/Tox21. These efforts demonstrate how machine learning can be used to predict AR-mediated bioactivity and can also be applied to other targets of endocrine disruption.

摘要

雄激素受体(AR)是内分泌干扰研究的一个目标,因为改变的信号可以影响几代人的正常生殖和神经发育。为了优先考虑具有替代方法的化合物,美国环境保护署(EPA)使用来自 11 种测定方法的数据构建了 AR 激动剂和拮抗剂信号通路的模型。虽然这些 EPA ToxCast AR 模型需要数据来分配生物活性评分,但贝叶斯机器学习方法可以仅从分子结构进行前瞻性预测。该方法应用于与 EPA 的 AR 信号通路相对应的多种类型的数据,使用专有软件 Assay Central。所有机器学习模型的训练性能,包括其他六种算法,都通过内部 5 倍交叉验证统计数据进行了评估。还使用 EPA 发表的参考化学品的外部预测来评估贝叶斯机器学习模型,以比较预测准确性与 EPA 的公布结果。选择进一步研究内分泌干扰的机器学习模型组包括来自 ToxCast/Tox21 2019 年 2 月发布的连续 AC 数据。这些努力展示了如何使用机器学习来预测 AR 介导的生物活性,并且还可以应用于其他内分泌干扰靶标。

相似文献

1
Comparison of Machine Learning Models for the Androgen Receptor.
Environ Sci Technol. 2020 Nov 3;54(21):13690-13700. doi: 10.1021/acs.est.0c03984. Epub 2020 Oct 21.
2
Machine Learning Models for Estrogen Receptor Bioactivity and Endocrine Disruption Prediction.
Environ Sci Technol. 2020 Oct 6;54(19):12202-12213. doi: 10.1021/acs.est.0c03982. Epub 2020 Sep 15.
3
Development, validation and integration of in silico models to identify androgen active chemicals.
Chemosphere. 2019 Apr;220:204-215. doi: 10.1016/j.chemosphere.2018.12.131. Epub 2018 Dec 19.
4
Development and Validation of a Computational Model for Androgen Receptor Activity.
Chem Res Toxicol. 2017 Apr 17;30(4):946-964. doi: 10.1021/acs.chemrestox.6b00347. Epub 2016 Dec 9.
5
Machine Learning Consensus To Predict the Binding to the Androgen Receptor within the CoMPARA Project.
J Chem Inf Model. 2019 May 28;59(5):1839-1848. doi: 10.1021/acs.jcim.8b00794. Epub 2019 Feb 11.
6
Comparing Machine Learning Models for Aromatase (P450 19A1).
Environ Sci Technol. 2020 Dec 1;54(23):15546-15555. doi: 10.1021/acs.est.0c05771. Epub 2020 Nov 19.
7
CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity.
Environ Health Perspect. 2020 Feb;128(2):27002. doi: 10.1289/EHP5580. Epub 2020 Feb 7.
8
Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
Mol Pharm. 2018 Oct 1;15(10):4361-4370. doi: 10.1021/acs.molpharmaceut.8b00546. Epub 2018 Aug 28.
9
Using in vitro high throughput screening assays to identify potential endocrine-disrupting chemicals.
Environ Health Perspect. 2013 Jan;121(1):7-14. doi: 10.1289/ehp.1205065. Epub 2012 Sep 28.

引用本文的文献

1
Toxic Alerts of Endocrine Disruption Revealed by Explainable Artificial Intelligence.
Environ Health (Wash). 2025 Jan 27;3(3):321-333. doi: 10.1021/envhealth.4c00218. eCollection 2025 Mar 21.
2
Accelerated Development of Novel Biomass-Based Polyurethane Adhesives via Machine Learning.
ACS Appl Mater Interfaces. 2025 Mar 12;17(10):15959-15968. doi: 10.1021/acsami.4c20371. Epub 2025 Feb 28.
3
Machine learning methods to predict cadmium (Cd) concentration in rice grain and support soil management at a regional scale.
Fundam Res. 2023 Mar 10;4(5):1196-1205. doi: 10.1016/j.fmre.2023.02.016. eCollection 2024 Sep.
4
Comparative Study of Machine Learning-Based QSAR Modeling of Anti-inflammatory Compounds from Durian Extraction.
ACS Omega. 2024 Feb 7;9(7):7817-7826. doi: 10.1021/acsomega.3c07386. eCollection 2024 Feb 20.
5
Review of studies dedicated to the nuclear receptor family: Therapeutic prospects and toxicological concerns.
Front Endocrinol (Lausanne). 2022 Sep 13;13:986016. doi: 10.3389/fendo.2022.986016. eCollection 2022.
6
Research Progress of the Endocrine-Disrupting Effects of Disinfection Byproducts.
J Xenobiot. 2022 Jun 28;12(3):145-157. doi: 10.3390/jox12030013.
7
Direct Prediction of Physicochemical Properties and Toxicities of Chemicals from Analytical Descriptors by GC-MS.
Anal Chem. 2022 Jun 28;94(25):9149-9157. doi: 10.1021/acs.analchem.2c01667. Epub 2022 Jun 14.
9
Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery.
Mol Pharm. 2021 Jan 4;18(1):403-415. doi: 10.1021/acs.molpharmaceut.0c01013. Epub 2020 Dec 16.
10
Comparing Machine Learning Models for Aromatase (P450 19A1).
Environ Sci Technol. 2020 Dec 1;54(23):15546-15555. doi: 10.1021/acs.est.0c05771. Epub 2020 Nov 19.

本文引用的文献

2
Machine Learning Models for Estrogen Receptor Bioactivity and Endocrine Disruption Prediction.
Environ Sci Technol. 2020 Oct 6;54(19):12202-12213. doi: 10.1021/acs.est.0c03982. Epub 2020 Sep 15.
3
Comparing Machine Learning Algorithms for Predicting Drug-Induced Liver Injury (DILI).
Mol Pharm. 2020 Jul 6;17(7):2628-2637. doi: 10.1021/acs.molpharmaceut.0c00326. Epub 2020 Jun 8.
4
CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity.
Environ Health Perspect. 2020 Feb;128(2):27002. doi: 10.1289/EHP5580. Epub 2020 Feb 7.
5
Toxicity prediction of small drug molecules of androgen receptor using multilevel ensemble model.
J Bioinform Comput Biol. 2019 Oct;17(5):1950033. doi: 10.1142/S0219720019500331. Epub 2019 Oct 13.
7
Exploiting machine learning for end-to-end drug discovery and development.
Nat Mater. 2019 May;18(5):435-441. doi: 10.1038/s41563-019-0338-z. Epub 2019 Apr 18.
8
Multiple Machine Learning Comparisons of HIV Cell-based and Reverse Transcriptase Data Sets.
Mol Pharm. 2019 Apr 1;16(4):1620-1632. doi: 10.1021/acs.molpharmaceut.8b01297. Epub 2019 Feb 26.
9
Ebola Virus Bayesian Machine Learning Models Enable New in Vitro Leads.
ACS Omega. 2019 Jan 31;4(1):2353-2361. doi: 10.1021/acsomega.8b02948. Epub 2019 Jan 30.
10
Machine Learning Consensus To Predict the Binding to the Androgen Receptor within the CoMPARA Project.
J Chem Inf Model. 2019 May 28;59(5):1839-1848. doi: 10.1021/acs.jcim.8b00794. Epub 2019 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验