Division of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota, USA.
Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA.
Surg Infect (Larchmt). 2021 Jun;22(5):523-531. doi: 10.1089/sur.2020.208. Epub 2020 Oct 20.
We developed a novel analytic tool for colorectal deep organ/space surgical site infections (C-OSI) prediction utilizing both institutional and extra-institutional American College of Surgeons-National Surgical Quality Improvement Program (ACS-NSQIP) data. Elective colorectal resections (2006-2014) were included. The primary end point was C-OSI rate. A Bayesian-Probit regression model with multiple imputation (BPMI) via Dirichlet process handled missing data. The baseline model for comparison was a multivariable logistic regression model (generalized linear model; GLM) with indicator parameters for missing data and stepwise variable selection. Out-of-sample performance was evaluated with receiver operating characteristic (ROC) analysis of 10-fold cross-validated samples. Among 2,376 resections, C-OSI rate was 4.6% (n = 108). The BPMI model identified (n = 57; 56% sensitivity) of these patients, when set at a threshold leading to 80% specificity (approximately a 20% false alarm rate). The BPMI model produced an area under the curve (AUC) = 0.78 via 10-fold cross- validation demonstrating high predictive accuracy. In contrast, the traditional GLM approach produced an AUC = 0.71 and a corresponding sensitivity of 0.47 at 80% specificity, both of which were statstically significant differences. In addition, when the model was built utilizing extra-institutional data via inclusion of all (non-Mayo Clinic) patients in ACS-NSQIP, C-OSI prediction was less accurate with AUC = 0.74 and sensitivity of 0.47 (i.e., a 19% relative performance decrease) when applied to patients at our institution. Although the statistical methodology associated with the BPMI model provides advantages over conventional handling of missing data, the tool should be built with data specific to the individual institution to optimize performance.
我们开发了一种新的分析工具,用于利用机构和机构外美国外科医师学院-国家外科质量改进计划(ACS-NSQIP)数据预测结直肠深部器官/空间手术部位感染(C-OSI)。包括选择性结直肠切除术(2006-2014 年)。主要终点是 C-OSI 发生率。采用贝叶斯概率回归模型与多重插补(BPMI)通过狄利克雷过程处理缺失数据。比较的基线模型是具有缺失数据指示参数和逐步变量选择的多变量逻辑回归模型(广义线性模型;GLM)。采用 10 折交叉验证样本的接收者操作特征(ROC)分析评估样本外性能。在 2376 例切除术中,C-OSI 发生率为 4.6%(n=108)。BPMI 模型确定了这些患者中的(n=57;56%的敏感性),当设置在导致 80%特异性的阈值(约 20%的误报率)时。BPMI 模型通过 10 折交叉验证产生曲线下面积(AUC)=0.78,表明具有较高的预测准确性。相比之下,传统的 GLM 方法在 80%特异性时产生 AUC=0.71 和相应的敏感性为 0.47,均具有统计学显著差异。此外,当通过包括 ACS-NSQIP 中所有(非梅奥诊所)患者来利用机构外数据构建模型时,当应用于我们机构的患者时,C-OSI 预测的准确性较低,AUC=0.74,敏感性为 0.47(即性能相对下降 19%)。虽然与 BPMI 模型相关的统计方法提供了处理缺失数据的优势,但该工具应针对特定机构的数据进行构建,以优化性能。