College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China.
School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, P.R. China.
Anal Chem. 2020 Nov 3;92(21):14754-14761. doi: 10.1021/acs.analchem.0c03375. Epub 2020 Oct 21.
Unstable detection environment is one of the biggest interferences for surface-enhanced Raman spectroscopy (SERS) using in real-time monitoring of toxic pollutants, leading to unreliable results. To address this problem, we have designed and prepared a cavity-based particle-in-quasicavity (PIQC) architecture composed of hierarchical ZnO/Ag nanosheets and nanoprotrusions for improving the SERS performance under a liquid environment. Benefitting from the special cascaded optical field mode, the PIQC ZnO/Ag exhibits excellent SERS detectability, with 10 M of limit of detection for rhodamine 6G and 12.8% of signal relative standard deviation value. Furthermore, by means of a microfluidic chip, this PIQC structure is proved to have the quantitative analysis feasibility and realizes real-time monitoring of the 3,3',4,4'-tetrachlorobiphenyl, a representative global environmental hazard, under the flowing environment. The strategy in this paper provides a brand new idea to promote the application of SERS in contaminant monitoring and is also instructive for light control in other optical fields.
不稳定的检测环境是表面增强拉曼光谱(SERS)用于实时监测有毒污染物的最大干扰之一,导致结果不可靠。为了解决这个问题,我们设计并制备了一种基于腔的粒子在准腔(PIQC)结构,由分层 ZnO/Ag 纳米片和纳米突起组成,用于提高液体环境下的 SERS 性能。受益于特殊的级联光场模式,PIQC ZnO/Ag 表现出优异的 SERS 检测能力,对罗丹明 6G 的检测限为 10 M,信号相对标准偏差值为 12.8%。此外,通过微流控芯片,证明了这种 PIQC 结构具有定量分析的可行性,并实现了在流动环境下对代表性的全球环境危害物 3,3',4,4'-四氯联苯的实时监测。本文中的策略为促进 SERS 在污染物监测中的应用提供了全新的思路,对其他光学领域的光控制也具有指导意义。