Seo Juyeon, Feng Peiyun, Li Jianlin, Hong Sanghyun, Gao Sen, Byun Ji Young, Jung Yung Joon
Department of Mechanical and Industrial Engineering Northeastern University Boston Massachusetts 02115 USA.
Extreme Materials Research Center Korea Institute of Science and Technology 5 Hwarang-ro 14-gil Seoul 02792 Republic of Korea.
Small Sci. 2025 Feb 28;5(6):2400627. doi: 10.1002/smsc.202400627. eCollection 2025 Jun.
Herein, the scalable fabrication of hierarchical silicon structures featuring high-density, horizontally super-aligned sub-5 nm silicon nanowires (SiNWs), is reported. These unprecedented, highly organized silicon architectures with tunable sizes and densities are fabricated using straightforward micro-patterned SiO/Si templates followed by a chemical vaporetching process. In time-resolved structural analysis, it is revealed that rapid, aggressive etching is crucial for creating an inhomogeneous spatial distribution of vapor etchants, inducing surface defects acting as preferential sites for localized anisotropic silicon etching along <111> direction. The efficacy of this unique structure is demonstrated as a single-molecule detectable surface-enhanced Raman scattering sensor, incorporating sub-10 nm silver plasmonic nanoparticles. Its distinct structural features-marked by quantum-confined dimensions, ultrahigh surface area, dual-scale roughness, and exceptional uniformity-enable significant enhancement of optical response and detection sensitivity down to 10 m. These highly controlled sub-5 nm SiNW architecture can broaden the applications of quantum nanowires in chemical and bio-sensing and other emerging technologies.
本文报道了具有高密度、水平超对齐亚5纳米硅纳米线(SiNWs)的分级硅结构的可扩展制造方法。这些具有可调尺寸和密度的前所未有的高度有序硅结构是通过直接微图案化的SiO/Si模板,然后进行化学气相蚀刻工艺制造的。在时间分辨结构分析中发现,快速、剧烈的蚀刻对于产生气相蚀刻剂的不均匀空间分布至关重要,从而诱导表面缺陷作为沿<111>方向进行局部各向异性硅蚀刻的优先位点。这种独特结构的功效在作为单分子可检测表面增强拉曼散射传感器中得到了证明,该传感器包含亚10纳米银等离子体纳米颗粒。其独特的结构特征——以量子限制尺寸、超高表面积、双尺度粗糙度和卓越均匀性为标志——能够显著增强光学响应并将检测灵敏度降低至10米。这些高度可控的亚5纳米SiNW结构可以拓宽量子纳米线在化学和生物传感以及其他新兴技术中的应用。