Suppr超能文献

中美洲获得性抗微生物耐药肠杆菌科细菌:一种一体健康系统综述。

Community-Acquired Antimicrobial Resistant Enterobacteriaceae in Central America: A One Health Systematic Review.

机构信息

School of Public Health, University of California, Berkeley, CA 94720, USA.

Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala.

出版信息

Int J Environ Res Public Health. 2020 Oct 19;17(20):7622. doi: 10.3390/ijerph17207622.

Abstract

Community-acquired antimicrobial resistant Enterobacteriaceae (CA-ARE) are an increasingly important issue around the world. Characterizing the distribution of regionally specific patterns of resistance is important to contextualize and develop locally relevant interventions. This systematic review adopts a One Health framework considering the health of humans, animals, and the environment to describe CA-ARE in Central America. Twenty studies were identified that focused on antimicrobial resistance (AMR) in Enterobacteriaceae. Studies on CA-ARE in Central America characterized resistance from diverse sources, including humans ( = 12), animals ( = 4), the environment ( = 2), and combinations of these categories ( = 2). A limited number of studies assessed prevalence of clinically important AMR, including carbapenem resistance ( = 3), third generation cephalosporin resistance ( = 7), colistin resistance ( = 2), extended spectrum beta-lactamase (ESBL) production ( = 4), or multidrug resistance ( = 4). This review highlights significant gaps in our current understanding of CA-ARE in Central America, most notably a general dearth of research, which requires increased investment and research on CA-ARE as well as AMR more broadly.

摘要

社区获得性耐药肠杆菌科细菌(CA-ARE)是全球日益严重的问题。描述区域特定耐药模式的分布对于了解和制定具有本地相关性的干预措施非常重要。本系统评价采用了一种关注人类、动物和环境健康的“One Health”框架,描述中美洲的 CA-ARE。确定了 20 项专注于肠杆菌科抗菌药物耐药性(AMR)的研究。中美洲 CA-ARE 的研究描述了来自不同来源的耐药性,包括人类(12 项)、动物(4 项)、环境(2 项)以及这些类别组合(2 项)。少数研究评估了临床重要的 AMR 流行率,包括碳青霉烯类耐药(3 项)、第三代头孢菌素耐药(7 项)、粘菌素耐药(2 项)、扩展谱β-内酰胺酶(ESBL)产生(4 项)或多药耐药(4 项)。本综述突出了我们目前对中美洲 CA-ARE 认识的重大差距,特别是缺乏研究,这需要增加对 CA-ARE 以及更广泛的 AMR 的投资和研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d096/7589814/d0d6c349a9ba/ijerph-17-07622-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验