Schiffer Jamie M, Mael Liora E, Prather Kimberly A, Amaro Rommie E, Grassian Vicki H
Department of Chemistry and Biochemistry and Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States.
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States.
ACS Cent Sci. 2018 Dec 26;4(12):1617-1623. doi: 10.1021/acscentsci.8b00674. Epub 2018 Dec 14.
Atmospheric aerosols have long been known to alter climate by scattering incoming solar radiation and acting as seeds for cloud formation. These processes have vast implications for controlling the chemistry of our environment and the Earth's climate. Sea spray aerosol (SSA) is emitted over nearly three-quarters of our planet, yet precisely how SSA impacts Earth's radiation budget remains highly uncertain. Over the past several decades, studies have shown that SSA particles are far more complex than just sea salt. Ocean biological and physical processes produce individual SSA particles containing a diverse array of biological species including proteins, enzymes, bacteria, and viruses and a diverse array of organic compounds including fatty acids and sugars. Thus, a new frontier of research is emerging at the nexus of chemistry, biology, and atmospheric science. In this Outlook article, we discuss how current and future aerosol chemistry research demands a tight coupling between experimental (observational and laboratory studies) and computational (simulation-based) methods. This integration of approaches will enable the systematic interrogation of the complexity within individual SSA particles at a level that will enable prediction of the physicochemical properties of real-world SSA, ultimately illuminating the detailed mechanisms of how the constituents within individual SSA impact climate.
长期以来,人们一直知道大气气溶胶会通过散射入射太阳辐射和充当云形成的凝结核来改变气候。这些过程对控制我们环境的化学性质和地球气候具有深远影响。海喷雾气溶胶(SSA)在地球近四分之三的区域排放,然而SSA如何影响地球辐射收支仍高度不确定。在过去几十年中,研究表明SSA颗粒远比海盐复杂。海洋生物和物理过程产生的单个SSA颗粒包含多种生物物种,如蛋白质、酶、细菌和病毒,以及多种有机化合物,如脂肪酸和糖类。因此,一个新的研究前沿正在化学、生物学和大气科学的交叉点上出现。在这篇展望文章中,我们讨论了当前和未来的气溶胶化学研究如何需要实验(观测和实验室研究)和计算(基于模拟)方法之间的紧密结合。这种方法的整合将能够系统地探究单个SSA颗粒内部的复杂性,达到能够预测真实世界SSA物理化学性质的水平,最终阐明单个SSA内部成分如何影响气候的详细机制。