CMS - Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
J Chem Phys. 2020 Oct 14;153(14):144102. doi: 10.1063/5.0020768.
Explicit description of atomic polarizability is critical for the accurate treatment of inter-molecular interactions by force fields (FFs) in molecular dynamics (MD) simulations aiming to investigate complex electrostatic environments such as metal-binding sites of metalloproteins. Several models exist to describe key monovalent and divalent cations interacting with proteins. Many of these models have been developed from ion-amino-acid interactions and/or aqueous-phase data on cation solvation. The transferability of these models to cation-protein interactions remains uncertain. Herein, we assess the accuracy of existing FFs by their abilities to reproduce hierarchies of thousands of Ca-dipeptide interaction energies based on density-functional theory calculations. We find that the Drude polarizable FF, prior to any parameterization, better approximates the QM interaction energies than any of the non-polarizable FFs. Nevertheless, it required improvement in order to address polarization catastrophes where, at short Ca-carboxylate distances, the Drude particle of oxygen overlaps with the divalent cation. To ameliorate this, we identified those conformational properties that produced the poorest prediction of interaction energies to reduce the parameter space for optimization. We then optimized the selected cation-peptide parameters using Boltzmann-weighted fitting and evaluated the resulting parameters in MD simulations of the N-lobe of calmodulin. We also parameterized and evaluated the CTPOL FF, which incorporates charge-transfer and polarization effects in additive FFs. This work shows how QM-driven parameter development, followed by testing in condensed-phase simulations, may yield FFs that can accurately capture the structure and dynamics of ion-protein interactions.
原子极化率的明确描述对于通过分子动力学(MD)模拟研究复杂静电环境(如金属结合蛋白的金属结合位点)中准确处理分子间相互作用至关重要。有几种模型可用于描述与蛋白质相互作用的关键单价和二价阳离子。这些模型中的许多都是从离子-氨基酸相互作用和/或阳离子溶剂化的水相数据开发而来。这些模型向阳离子-蛋白质相互作用的转移仍然不确定。在此,我们通过评估它们根据密度泛函理论计算重现数千个 Ca-二肽相互作用能的能力来评估现有 FF 的准确性。我们发现,在没有任何参数化的情况下,Drude 极化 FF 比任何非极化 FF 更能近似 QM 相互作用能。然而,为了解决极化灾难问题,需要改进它,在这种情况下,在短 Ca-羧酸盐距离下,Drude 氧粒子与二价阳离子重叠。为了改善这种情况,我们确定了那些产生最差相互作用能预测的构象特性,以减少优化的参数空间。然后,我们使用 Boltzmann 加权拟合优化了所选的阳离子-肽参数,并在钙调蛋白 N 结构域的 MD 模拟中评估了得到的参数。我们还参数化并评估了 CTPOL FF,它在加性 FF 中包含电荷转移和极化效应。这项工作展示了如何通过 QM 驱动的参数开发,然后在凝聚相模拟中进行测试,可能会产生能够准确捕捉离子-蛋白质相互作用结构和动力学的 FF。