Yang Manyi, Zhang Duo, Wang Xinyan, Li BoWen, Zhang Linfeng, E Weinan, Zhu Tong, Wang Han
The Institute of Green Chemistry and Engineering, Nanjing University, Suzhou, Jiangsu 215163, China.
AI for Science Institute, Beijing 100080, China.
Research (Wash D C). 2025 Aug 25;8:0837. doi: 10.34133/research.0837. eCollection 2025.
The advent of machine learning (ML) in computational chemistry heralds a transformative approach to one of the quintessential challenges in computer-aided drug design (CADD): the accurate and cost-effective calculation of atomic interactions. By leveraging a neural network (NN) potential, we address this balance and push the boundaries of the NN potential's representational capacity. Our work details the development of a robust general-purpose NN potential, architected on the framework of DPA-2, a deep learning potential with attention, which demonstrates remarkable fidelity in replicating the interatomic potential energy surface for drug-like molecules comprising 8 critical chemical elements: H, C, N, O, F, S, Cl, and P. We employed state-of-the-art molecular dynamic (MD) techniques, including temperature acceleration and enhanced sampling, to construct a comprehensive dataset to ensure exhaustive coverage of relevant configurational spaces. Our rigorous testing protocols, including torsion scanning, structure relaxation, and high-temperature MD simulations across various organic molecules, have culminated in an NN model that achieves chemical precision commensurate with the highly regarded density functional theory model while substantially outstripping the accuracy of prevalent semi-empirical methods. This study presents a leap forward in the predictive modeling of molecular interactions, offering extensive applications in drug development and beyond.
机器学习(ML)在计算化学领域的出现,预示着计算机辅助药物设计(CADD)中一个典型挑战——原子相互作用的精确且经济高效的计算——迎来了一种变革性方法。通过利用神经网络(NN)势,我们解决了这一平衡问题,并拓展了NN势的表征能力边界。我们的工作详细介绍了一种强大的通用NN势的开发,该势构建于DPA - 2框架之上,DPA - 2是一种具有注意力机制的深度学习势,在复制包含8种关键化学元素(H、C、N、O、F、S、Cl和P)的类药物分子的原子间势能面方面表现出了卓越的保真度。我们采用了包括温度加速和增强采样在内的先进分子动力学(MD)技术,构建了一个全面的数据集,以确保对相关构型空间的详尽覆盖。我们严格的测试协议,包括扭转扫描、结构弛豫以及对各种有机分子进行高温MD模拟,最终得到了一个NN模型,该模型实现了与备受推崇的密度泛函理论模型相当的化学精度,同时大大超越了流行的半经验方法的准确性。这项研究在分子相互作用的预测建模方面取得了重大进展,在药物开发及其他领域有着广泛的应用。