Yazdani Akram, Lenz Heinz-Josef, Pillonetto Gianluigi, Mendez-Giraldez Raul, Yazdani Azam, Sanoff Hanna, Hadi Reza, Samiei Esmat, Venook Alan P, Ratain Mark J, Rashid Naim, Vincent Benjamin G, Qu Xueping, Wen Yujia, Kosorok Michael, Symmans William F, Shen John Paul Y C, Lee Michael S, Kopetz Scott, Nixon Andrew B, Bertagnolli Monica M, Perou Charles M, Innocenti Federico
Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
University of Texas Health Science Center at Houston, Texas, TX, USA.
Commun Med (Lond). 2025 Jan 8;5(1):9. doi: 10.1038/s43856-024-00728-z.
Gene signatures derived from transcriptomic-causal networks offer potential for tailoring clinical care in cancer treatment by identifying predictive and prognostic biomarkers. This study aimed to uncover such signatures in metastatic colorectal cancer (CRC) patients to aid treatment decisions.
We constructed transcriptomic-causal networks and integrated gene interconnectivity into overall survival (OS) analysis to control for confounding genes. This integrative approach involved germline genotype and tumor RNA-seq data from 1165 metastatic CRC patients. The patients were enrolled in a randomized clinical trial receiving either cetuximab or bevacizumab in combination with chemotherapy. An external cohort of paired CRC normal and tumor samples, along with protein-protein interaction databases, was used for replication.
We identify promising predictive and prognostic gene signatures from pre-treatment gene expression profiles. Our study discerns sets of genes, each forming a signature that collectively contribute to define patient subgroups with different prognosis and response to the therapies. Using an external cohort, we show that the genes influencing OS within the signatures, such as FANCI and PRC1, are upregulated in CRC tumor vs. normal tissue. These signatures are highly associated with immune features, including macrophages, cytotoxicity, and wound healing. Furthermore, the corresponding proteins encoded by the genes within the signatures interact with each other and are functionally related.
This study underscores the utility of gene signatures derived from transcriptomic-causal networks in patient stratification for effective therapies. The interpretability of the findings, supported by replication, highlights the potential of these signatures to identify patients likely to benefit from cetuximab or bevacizumab.
从转录组因果网络衍生的基因特征通过识别预测性和预后性生物标志物,为癌症治疗中定制临床护理提供了潜力。本研究旨在揭示转移性结直肠癌(CRC)患者中的此类特征,以辅助治疗决策。
我们构建了转录组因果网络,并将基因互连性整合到总生存期(OS)分析中,以控制混杂基因。这种综合方法涉及1165例转移性CRC患者的种系基因型和肿瘤RNA测序数据。这些患者参加了一项随机临床试验,接受西妥昔单抗或贝伐单抗联合化疗。使用配对的CRC正常和肿瘤样本的外部队列以及蛋白质-蛋白质相互作用数据库进行验证。
我们从治疗前基因表达谱中识别出有前景的预测性和预后性基因特征。我们的研究识别出几组基因,每组形成一个特征,共同有助于定义具有不同预后和对治疗反应的患者亚组。使用外部队列,我们表明特征内影响OS的基因,如FANCI和PRC1,在CRC肿瘤组织与正常组织中上调。这些特征与免疫特征高度相关,包括巨噬细胞、细胞毒性和伤口愈合。此外,特征内基因编码的相应蛋白质相互作用且功能相关。
本研究强调了从转录组因果网络衍生的基因特征在患者分层以进行有效治疗方面的实用性。研究结果的可解释性得到了验证的支持,突出了这些特征识别可能从西妥昔单抗或贝伐单抗中获益的患者的潜力。