Suppr超能文献

基于元路径的 miRNA-疾病关联预测。

MiRNA-disease association prediction based on meta-paths.

机构信息

School of Computer Science and Technology, Xidian University, Xi'an 710071, P.R. China.

出版信息

Brief Bioinform. 2022 Mar 10;23(2). doi: 10.1093/bib/bbab571.

Abstract

Since miRNAs can participate in the posttranscriptional regulation of gene expression, they may provide ideas for the development of new drugs or become new biomarkers for drug targets or disease diagnosis. In this work, we propose an miRNA-disease association prediction method based on meta-paths (MDPBMP). First, an miRNA-disease-gene heterogeneous information network was constructed, and seven symmetrical meta-paths were defined according to different semantics. After constructing the initial feature vector for the node, the vector information carried by all nodes on the meta-path instance is extracted and aggregated to update the feature vector of the starting node. Then, the vector information obtained by the nodes on different meta-paths is aggregated. Finally, miRNA and disease embedding feature vectors are used to calculate their associated scores. Compared with the other methods, MDPBMP obtained the highest AUC value of 0.9214. Among the top 50 predicted miRNAs for lung neoplasms, esophageal neoplasms, colon neoplasms and breast neoplasms, 49, 48, 49 and 50 have been verified. Furthermore, for breast neoplasms, we deleted all the known associations between breast neoplasms and miRNAs from the training set. These results also show that for new diseases without known related miRNA information, our model can predict their potential miRNAs. Code and data are available at https://github.com/LiangYu-Xidian/MDPBMP.

摘要

由于 miRNAs 可以参与基因表达的转录后调控,因此它们可能为新药的开发提供思路,或者成为药物靶点或疾病诊断的新生物标志物。在这项工作中,我们提出了一种基于元路径 (MDPBMP) 的 miRNA-疾病关联预测方法。首先,构建了 miRNA-疾病-基因异质信息网络,并根据不同的语义定义了 7 条对称元路径。在构建节点的初始特征向量之后,提取并聚合元路径实例上所有节点携带的向量信息,以更新起始节点的特征向量。然后,聚合来自不同元路径的节点的向量信息。最后,使用 miRNA 和疾病嵌入特征向量计算它们的关联分数。与其他方法相比,MDPBMP 获得了最高的 AUC 值 0.9214。在肺癌、食管癌、结肠癌和乳腺癌的前 50 个预测 miRNA 中,有 49、48、49 和 50 个已经得到验证。此外,对于乳腺癌,我们从训练集中删除了所有已知的乳腺癌与 miRNA 之间的关联。这些结果还表明,对于没有已知相关 miRNA 信息的新疾病,我们的模型可以预测其潜在的 miRNA。代码和数据可在 https://github.com/LiangYu-Xidian/MDPBMP 上获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验