Suppr超能文献

CRISPR/Cas9 靶向病毒 microRNA 促进卡波西肉瘤相关疱疹病毒的裂解性再激活。

CRISPR/Cas9 ablating viral microRNA promotes lytic reactivation of Kaposi's sarcoma-associated herpesvirus.

机构信息

Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.

Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

出版信息

Biochem Biophys Res Commun. 2020 Dec 17;533(4):1400-1405. doi: 10.1016/j.bbrc.2020.10.030. Epub 2020 Oct 19.

Abstract

The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated gene 9) system is an RNA-guided, DNA editing method that has been widely used for gene editing, including human viruses. Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8), following latent infection in human cells, can cause a variety of malignancies, such as Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD), with a high prevalence in immunocompromised patients. Of significant concern, the latent infection with KSHV has been shown to lead to increased resistance to antiviral therapies. MicroRNAs (miRNAs) are a set of non-coding, small RNA molecules that regulate protein-coding genes at the post-transcriptional and translational levels. KSHV has its miRNAs, most of which are expressed in latently infected cells and play a crucial role in maintaining KSHV latency. Notably, by regulating the expression of the downstream target genes in host cells, KSHV miRNAs can interact with the host environment to promote the development of KSHV-related diseases. Although CRISPR/Cas9 has been reported to edit KSHV protein-coding genes, there is no published literature on whether the CRISPR/Cas9 system can regulate the expression of KSHV miRNAs. In this study, we used CRISPR/Cas9 to inhibit the expression of KSHV miRNAs by directly editing the DNA sequences of individual KSHV miRNAs, or the promoter of clustered KHSV miRNAs, in latent KSHV-infected PEL cells. Our results show that CRISPR/Cas9 can ablate KSHV miRNAs expression, which in turn leads to the upregulation of viral lytic genes and alteration of host cellular gene expression. To the best of our knowledge, our study is the first reported demonstration of the CRISPR/Cas9 system editing KSHV miRNAs, further expanding the application of CRISPR/Cas9 as a novel antiviral strategy targeting KSHV latency.

摘要

CRISPR(成簇规律间隔短回文重复)/Cas9(CRISPR 相关基因 9)系统是一种 RNA 指导的 DNA 编辑方法,已广泛用于基因编辑,包括人类病毒。卡波西肉瘤相关疱疹病毒(KSHV/HHV8)在潜伏感染人类细胞后,可引起多种恶性肿瘤,如卡波西肉瘤(KS)、原发性渗出性淋巴瘤(PEL)和多中心卡斯特曼病(MCD),在免疫功能低下的患者中发病率较高。值得关注的是,KSHV 的潜伏感染已被证明导致抗病毒治疗的耐药性增加。microRNAs(miRNAs)是一组非编码的小 RNA 分子,可在转录后和翻译水平上调节蛋白质编码基因。KSHV 有其 miRNAs,其中大多数在潜伏感染细胞中表达,在维持 KSHV 潜伏中起着至关重要的作用。值得注意的是,通过调节宿主细胞下游靶基因的表达,KSHV miRNAs 可以与宿主环境相互作用,促进 KSHV 相关疾病的发展。尽管已经报道 CRISPR/Cas9 可以编辑 KSHV 蛋白编码基因,但目前尚无关于 CRISPR/Cas9 系统是否可以调节 KSHV miRNAs 表达的文献。在这项研究中,我们使用 CRISPR/Cas9 通过直接编辑单个 KSHV miRNAs 的 DNA 序列或簇集的 KHSV miRNAs 的启动子,来抑制潜伏感染的 PEL 细胞中 KSHV miRNAs 的表达。我们的结果表明,CRISPR/Cas9 可以使 KSHV miRNAs 的表达失活,进而导致病毒裂解基因的上调和宿主细胞基因表达的改变。据我们所知,我们的研究首次报道了 CRISPR/Cas9 系统编辑 KSHV miRNAs,进一步扩展了 CRISPR/Cas9 作为一种针对 KSHV 潜伏的新型抗病毒策略的应用。

相似文献

1
CRISPR/Cas9 ablating viral microRNA promotes lytic reactivation of Kaposi's sarcoma-associated herpesvirus.
Biochem Biophys Res Commun. 2020 Dec 17;533(4):1400-1405. doi: 10.1016/j.bbrc.2020.10.030. Epub 2020 Oct 19.
3
ARID3B: a Novel Regulator of the Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycle.
J Virol. 2016 Sep 29;90(20):9543-55. doi: 10.1128/JVI.03262-15. Print 2016 Oct 15.
5
Altering the Anti-inflammatory Lipoxin Microenvironment: a New Insight into Kaposi's Sarcoma-Associated Herpesvirus Pathogenesis.
J Virol. 2016 Nov 28;90(24):11020-11031. doi: 10.1128/JVI.01491-16. Print 2016 Dec 15.
6
A CRISPR-Cas9 screen identifies mitochondrial translation as an essential process in latent KSHV infection of human endothelial cells.
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28384-28392. doi: 10.1073/pnas.2011645117. Epub 2020 Oct 29.
8
miRNAs and their roles in KSHV pathogenesis.
Virus Res. 2019 Jun;266:15-24. doi: 10.1016/j.virusres.2019.03.024. Epub 2019 Apr 2.
9
Discovery of Kaposi's sarcoma herpesvirus-encoded circular RNAs and a human antiviral circular RNA.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12805-12810. doi: 10.1073/pnas.1816183115. Epub 2018 Nov 19.

引用本文的文献

1
2
Molecular Mechanisms of Kaposi Sarcoma-Associated Herpesvirus (HHV8)-Related Lymphomagenesis.
Cancers (Basel). 2024 Oct 31;16(21):3693. doi: 10.3390/cancers16213693.
3
Precision oncology revolution: CRISPR-Cas9 and PROTAC technologies unleashed.
Front Genet. 2024 Jul 31;15:1434002. doi: 10.3389/fgene.2024.1434002. eCollection 2024.
4
Small non-coding RNAs encoded by RNA viruses: old controversies and new lessons from the COVID-19 pandemic.
Front Genet. 2023 Jun 21;14:1216890. doi: 10.3389/fgene.2023.1216890. eCollection 2023.
5
Targeting Cancer with CRISPR/Cas9-Based Therapy.
Int J Mol Sci. 2022 Jan 5;23(1):573. doi: 10.3390/ijms23010573.
6
The Application of CRISPR/Cas Systems for Antiviral Therapy.
Front Genome Ed. 2021 Oct 13;3:745559. doi: 10.3389/fgeed.2021.745559. eCollection 2021.
9
Designer nucleases to treat malignant cancers driven by viral oncogenes.
Virol J. 2021 Jan 13;18(1):18. doi: 10.1186/s12985-021-01488-1.

本文引用的文献

1
CRISPR-engineered T cells in patients with refractory cancer.
Science. 2020 Feb 28;367(6481). doi: 10.1126/science.aba7365. Epub 2020 Feb 6.
3
Kaposi sarcoma.
Nat Rev Dis Primers. 2019 Jan 31;5(1):9. doi: 10.1038/s41572-019-0060-9.
5
Functional dissection of human targets for KSHV-encoded miRNAs using network analysis.
Sci Rep. 2017 Jun 9;7(1):3159. doi: 10.1038/s41598-017-03462-w.
6
KSHV microRNAs: Tricks of the Devil.
Trends Microbiol. 2017 Aug;25(8):648-661. doi: 10.1016/j.tim.2017.02.002. Epub 2017 Mar 2.
7
CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo.
Sci Rep. 2016 Feb 29;6:22312. doi: 10.1038/srep22312.
8
KSHV Genome Replication and Maintenance.
Front Microbiol. 2016 Feb 1;7:54. doi: 10.3389/fmicb.2016.00054. eCollection 2016.
9
Targeting HGF/c-MET induces cell cycle arrest, DNA damage, and apoptosis for primary effusion lymphoma.
Blood. 2015 Dec 24;126(26):2821-31. doi: 10.1182/blood-2015-07-658823. Epub 2015 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验