Suppr超能文献

高病死率环境下新生儿住院死亡率的预测模型构建。

Prediction modelling of inpatient neonatal mortality in high-mortality settings.

机构信息

Health Services Unit, KEMRI-Wellcome Trust Research Programme, Nairobi, Kenya

Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya.

出版信息

Arch Dis Child. 2021 Apr 21;106(5):449-454. doi: 10.1136/archdischild-2020-319217.

Abstract

OBJECTIVE

Prognostic models aid clinical decision making and evaluation of hospital performance. Existing neonatal prognostic models typically use physiological measures that are often not available, such as pulse oximetry values, in routine practice in low-resource settings. We aimed to develop and validate two novel models to predict all cause in-hospital mortality following neonatal unit admission in a low-resource, high-mortality setting.

STUDY DESIGN AND SETTING

We used basic, routine clinical data recorded by duty clinicians at the time of admission to derive (n=5427) and validate (n=1627) two novel models to predict in-hospital mortality. The Neonatal Essential Treatment Score (NETS) included treatments prescribed at the time of admission while the Score for Essential Neonatal Symptoms and Signs (SENSS) used basic clinical signs. Logistic regression was used, and performance was evaluated using discrimination and calibration.

RESULTS

At derivation, c-statistic (discrimination) for NETS was 0.92 (95% CI 0.90 to 0.93) and that for SENSS was 0.91 (95% CI 0.89 to 0.93). At external (temporal) validation, NETS had a c-statistic of 0.89 (95% CI 0.86 to 0.92) and SENSS 0.89 (95% CI 0.84 to 0.93). The calibration intercept for NETS was -0.72 (95% CI -0.96 to -0.49) and that for SENSS was -0.33 (95% CI -0.56 to -0.11).

CONCLUSION

Using routine neonatal data in a low-resource setting, we found that it is possible to predict in-hospital mortality using either treatments or signs and symptoms. Further validation of these models may support their use in treatment decisions and for case-mix adjustment to help understand performance variation across hospitals.

摘要

目的

预测模型有助于临床决策和医院绩效评估。现有的新生儿预后模型通常使用生理测量值,而这些测量值在资源匮乏环境下的常规实践中往往不可用,例如脉搏血氧饱和度值。我们旨在开发和验证两种新模型,以预测在资源匮乏、高死亡率环境下新生儿病房入院后所有原因的院内死亡率。

研究设计和设置

我们使用入院时值班临床医生记录的基本、常规临床数据,对(n=5427)和验证(n=1627)两个新模型进行了推导,以预测院内死亡率。新生儿基本治疗评分(NETS)包括入院时开具的治疗方案,而基本新生儿症状和体征评分(SENSS)则使用基本临床体征。使用逻辑回归,通过区分度和校准来评估性能。

结果

在推导过程中,NETS 的 c 统计量(区分度)为 0.92(95%CI 0.90 至 0.93),SENSS 为 0.91(95%CI 0.89 至 0.93)。在外部(时间)验证中,NETS 的 c 统计量为 0.89(95%CI 0.86 至 0.92),SENSS 为 0.89(95%CI 0.84 至 0.93)。NETS 的校准截距为-0.72(95%CI -0.96 至 -0.49),SENSS 为-0.33(95%CI -0.56 至 -0.11)。

结论

在资源匮乏的环境中使用常规新生儿数据,我们发现使用治疗或体征和症状可以预测院内死亡率。进一步验证这些模型可能有助于在治疗决策中使用它们,并进行病例组合调整,以帮助理解医院之间的绩效差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48ff/8070601/2e13e93176ef/archdischild-2020-319217f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验