Larivière-Loiselle Céline, Bélanger Erik, Marquet Pierre
Université Laval, Centre de recherche CERVO, Québec, Canada.
Université Laval, Département de physique, de génie physique et d'optique, Faculté des sciences et de génie, Québec, Canada.
Neurophotonics. 2020 Oct;7(4):040501. doi: 10.1117/1.NPh.7.4.040501. Epub 2020 Oct 16.
Over the past decade, laser-based digital holographic microscopy (DHM), an important approach in the field of quantitative-phase imaging techniques, has become a significant label-free modality for live-cell imaging and used particularly in cellular neuroscience. However, coherent noise remains a major drawback for DHM, significantly limiting the possibility to visualize neuronal processes and precluding important studies on neuronal connectivity. : The goal is to develop a DHM technique able to sharply visualize thin neuronal processes. : By combining a wavelength-tunable light source with the advantages of hologram numerical reconstruction of DHM, an approach called polychromatic DHM (P-DHM), providing OPD images with drastically decreased coherent noise, was developed. : When applied to cultured neuronal networks with an air microscope objective ( , 0.8 NA), P-DHM shows a coherent noise level typically corresponding to 1 nm at the single-pixel scale, in agreement with the -law, allowing to readily visualize the -wide thin neuronal processes with a signal-to-noise ratio of . : Therefore, P-DHM represents a very promising label-free technique to study neuronal connectivity and its development, including neurite outgrowth, elongation, and branching.
在过去十年中,基于激光的数字全息显微镜(DHM)作为定量相位成像技术领域的一种重要方法,已成为活细胞成像中一种重要的无标记成像方式,尤其在细胞神经科学中得到应用。然而,相干噪声仍然是DHM的一个主要缺点,严重限制了可视化神经元突起的可能性,并排除了对神经元连接性的重要研究。目标是开发一种能够清晰可视化细神经元突起的DHM技术。通过将波长可调光源与DHM全息图数值重建的优势相结合,开发了一种称为多色DHM(P-DHM)的方法,该方法提供的光程差(OPD)图像具有大幅降低的相干噪声。当使用空气显微镜物镜( ,0.8 NA)应用于培养的神经元网络时,P-DHM在单像素尺度上显示出通常对应于1nm的相干噪声水平,符合 定律,能够以 的信噪比轻松可视化 宽的细神经元突起。因此,P-DHM是一种非常有前途的无标记技术,可用于研究神经元连接性及其发育,包括神经突生长、伸长和分支。