Centre de recherche CERVO, Université Laval, 2601 chemin de la Canardière, Québec, QC G1J 2G3, Canada.
Centre de recherche CERVO, Université Laval, 2601 chemin de la Canardière, Québec, QC G1J 2G3, Canada; Centre d'optique, photonique et laser (COPL), Université Laval, 2375 rue de la Terrasse, Québec, QC G1V 0A6, Canada.
Methods. 2018 Mar 1;136:90-107. doi: 10.1016/j.ymeth.2018.02.001. Epub 2018 Feb 10.
Quantitative-phase imaging (QPI) has recently emerged as a powerful new quantitative microscopy technique suitable for the noninvasive exploration of the structure and dynamics of transparent specimens, including living cells in culture. Indeed, the quantitative-phase signal (QPS), induced by transparent living cells, can be detected with a nanometric axial sensitivity, and contains a wealth of information about both cell morphology and content. However, QPS is also sensitive to various sources of experimental noise. In this chapter, we emphasize how to properly and specifically measure the cell-mediated QPS in a wet-lab environment, when measuring with a digital holographic microscope (DHM). First, we present the substrate-requisite characteristics for properly achieving such cell-mediated QPS measurements at single-cell level. Then, we describe how quantitative-phase digital holographic microscopy (QP-DHM) can be used to numerically process holograms and subsequently reshape wavefronts in association with post-processing algorithms, thereby allowing for highly stable QPS obtainable over extended periods of time. Such stable QPS is a prerequisite for exploring the dynamics of specific cellular processes. We also describe experimental procedures that make it possible to extract important biophysical cellular parameters from QPS including absolute cell volume, transmembrane water permeability, and the movements of water in and out of the cell. To illustrate how QP-DHM can reveal the dynamics of specific cellular processes, we show how the monitoring of transmembrane water movements can be used to resolve the neuronal network dynamics at single-cell level. This is possible because QPS can measure the activity of electroneutral cotransports, including NKCC1 and KCC2, during a neuronal firing mediated by glutamate, the main excitatory neurotransmitter in the brain. Finally, we added a supplemental section, with more technical details, for readers who are interested in troubleshooting live-cell QP-DHM.
定量相位成像 (QPI) 最近成为一种强大的新定量显微镜技术,适用于透明标本的非侵入式结构和动力学研究,包括培养中的活细胞。实际上,由透明活细胞引起的定量相位信号 (QPS) 可以以纳米级的轴向灵敏度检测到,并且包含有关细胞形态和内容的丰富信息。然而,QPS 也对各种实验噪声源敏感。在本章中,我们强调了在湿实验室环境中使用数字全息显微镜 (DHM) 时如何正确且专门地测量细胞介导的 QPS。首先,我们介绍了在单细胞水平上实现这种细胞介导的 QPS 测量所需的基底要求特性。然后,我们描述了如何使用定量相位数字全息显微镜 (QP-DHM) 对全息图进行数值处理,并随后使用后处理算法重塑波前,从而可以获得长时间内高度稳定的 QPS。这种稳定的 QPS 是探索特定细胞过程动力学的前提条件。我们还描述了实验程序,这些程序可以从 QPS 中提取重要的生物物理细胞参数,包括细胞绝对体积、跨膜水渗透性以及细胞内外水的运动。为了说明 QP-DHM 如何揭示特定细胞过程的动力学,我们展示了如何监测跨膜水运动以在单细胞水平上解析神经元网络动力学。这是可能的,因为 QPS 可以测量在谷氨酸介导的神经元放电期间电中性共转运体(包括 NKCC1 和 KCC2)的活性,谷氨酸是大脑中的主要兴奋性神经递质。最后,我们添加了一个补充部分,其中包含更详细的技术细节,供有兴趣解决活细胞 QP-DHM 问题的读者使用。