Suppr超能文献

运动对基于表面肌电图的手势识别会话间准确性的影响。

Effects of Exercise on the Inter-Session Accuracy of sEMG-Based Hand Gesture Recognition.

作者信息

Liu Xiangyu, Dai Chenyun, Liu Jionghui, Yuan Yangyang

机构信息

College of Publishing, University of Shanghai for Science and Technology, Shanghai 200093, China.

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200241, China.

出版信息

Bioengineering (Basel). 2024 Aug 9;11(8):811. doi: 10.3390/bioengineering11080811.

Abstract

Surface electromyography (sEMG) is commonly used as an interface in human-machine interaction systems due to their high signal-to-noise ratio and easy acquisition. It can intuitively reflect motion intentions of users, thus is widely applied in gesture recognition systems. However, wearable sEMG-based gesture recognition systems are susceptible to changes in environmental noise, electrode placement, and physiological characteristics. This could result in significant performance degradation of the model in inter-session scenarios, bringing a poor experience to users. Currently, for noise from environmental changes and electrode shifting from wearing variety, numerous studies have proposed various data-augmentation methods and highly generalized networks to improve inter-session gesture recognition accuracy. However, few studies have considered the impact of individual physiological states. In this study, we assumed that user exercise could cause changes in muscle conditions, leading to variations in sEMG features and subsequently affecting the recognition accuracy of model. To verify our hypothesis, we collected sEMG data from 12 participants performing the same gesture tasks before and after exercise, and then used Linear Discriminant Analysis (LDA) for gesture classification. For the non-exercise group, the inter-session accuracy declined only by 2.86%, whereas that of the exercise group decreased by 13.53%. This finding proves that exercise is indeed a critical factor contributing to the decline in inter-session model performance.

摘要

表面肌电图(sEMG)因其高信噪比和易于采集,在人机交互系统中常被用作一种接口。它能够直观地反映用户的运动意图,因此在手势识别系统中得到广泛应用。然而,基于可穿戴sEMG的手势识别系统容易受到环境噪声、电极放置和生理特征变化的影响。这可能导致模型在不同会话场景下的性能显著下降,给用户带来不佳的体验。目前,针对环境变化产生的噪声以及因佩戴差异导致的电极移位问题,众多研究提出了各种数据增强方法和高度通用的网络,以提高不同会话间手势识别的准确率。然而,很少有研究考虑个体生理状态的影响。在本研究中,我们假设用户运动可能会导致肌肉状况发生变化,进而引起sEMG特征的变化,从而影响模型的识别准确率。为了验证我们的假设,我们收集了12名参与者在运动前后执行相同手势任务时的sEMG数据,然后使用线性判别分析(LDA)进行手势分类。对于非运动组,不同会话间的准确率仅下降了2.86%,而运动组的准确率下降了13.53%。这一发现证明,运动确实是导致不同会话间模型性能下降的一个关键因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验