Suppr超能文献

新知识的跨领域加法学习而非替代。

Cross-domain additive learning of new knowledge rather than replacement.

作者信息

Liu Jiahao, Jiao Ge

机构信息

College of Computer Science, Hengyang Normal University, Hengyang, 421008 China.

出版信息

Biomed Eng Lett. 2024 Jun 7;14(5):1137-1146. doi: 10.1007/s13534-024-00399-8. eCollection 2024 Sep.

Abstract

In medical clinical scenarios for reasons such as patient privacy, information protection and data migration, when domain adaptation is needed for real scenarios, the source-domain data is often inaccessible and only the pre-trained source model on the source-domain is available. Existing solutions for this type of problem tend to forget the rich task experience previously learned on the source domain after adapting, which means that the model simply overfits the target-domain data when adapting and does not learn robust features that facilitate real task decisions. We address this problem by exploring the particular application of source-free domain adaptation in medical image segmentation and propose a two-stage additive source-free adaptation framework. We generalize the domain-invariant features by constraining the core pathological structure and semantic consistency between different perspectives. And we reduce the segmentation generated by locating and filtering elements that may have errors through Monte-Carlo uncertainty estimation. We conduct comparison experiments with some other methods on a cross-device polyp segmentation and a cross-modal brain tumor segmentation dataset, the results in both the target and source domains verify that the proposed method can effectively solve the domain offset problem and the model retains its dominance on the source domain after learning new knowledge of the target domain.This work provides valuable exploration for achieving additive learning on the target and source domains in the absence of source data and offers new ideas and methods for adaptation research in the field of medical image segmentation.

摘要

在医学临床场景中,由于患者隐私、信息保护和数据迁移等原因,在实际场景需要进行域适应时,源域数据往往无法获取,只有源域上预训练的源模型可用。针对这类问题的现有解决方案在适应后往往会忘记之前在源域学到的丰富任务经验,这意味着模型在适应时只是简单地过度拟合目标域数据,而没有学习到有助于实际任务决策的鲁棒特征。我们通过探索无源域适应在医学图像分割中的具体应用来解决这个问题,并提出了一个两阶段的加法无源适应框架。我们通过约束不同视角之间的核心病理结构和语义一致性来泛化域不变特征。并且我们通过蒙特卡洛不确定性估计来定位和过滤可能有错误的元素,从而减少分割结果。我们在跨设备息肉分割和跨模态脑肿瘤分割数据集上与其他一些方法进行了比较实验,目标域和源域的结果都验证了所提出的方法能够有效解决域偏移问题,并且模型在学习了目标域的新知识后在源域上仍保持优势。这项工作为在没有源数据的情况下在目标域和源域上实现加法学习提供了有价值的探索,并为医学图像分割领域的适应研究提供了新的思路和方法。

相似文献

1
Cross-domain additive learning of new knowledge rather than replacement.新知识的跨领域加法学习而非替代。
Biomed Eng Lett. 2024 Jun 7;14(5):1137-1146. doi: 10.1007/s13534-024-00399-8. eCollection 2024 Sep.
4
Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation.将现成的源分割器应用于目标医学图像分割
Med Image Comput Comput Assist Interv. 2021;12902:549-559. doi: 10.1007/978-3-030-87196-3_51. Epub 2021 Sep 21.

本文引用的文献

1
Source-free unsupervised domain adaptation: A survey.无监督源域自适应:综述。
Neural Netw. 2024 Jun;174:106230. doi: 10.1016/j.neunet.2024.106230. Epub 2024 Mar 11.
2
A Comprehensive Survey on Source-Free Domain Adaptation.无源域适应的综合调查
IEEE Trans Pattern Anal Mach Intell. 2024 Aug;46(8):5743-5762. doi: 10.1109/TPAMI.2024.3370978. Epub 2024 Jul 2.
4
Source-free domain adaptation for image segmentation.无源域自适应图像分割。
Med Image Anal. 2022 Nov;82:102617. doi: 10.1016/j.media.2022.102617. Epub 2022 Sep 16.
8
Deep Neural Networks for Medical Image Segmentation.深度学习在医学图像分割中的应用。
J Healthc Eng. 2022 Mar 10;2022:9580991. doi: 10.1155/2022/9580991. eCollection 2022.
9
Generative Adversarial Networks in Medical Image augmentation: A review.生成对抗网络在医学图像增强中的应用:综述。
Comput Biol Med. 2022 May;144:105382. doi: 10.1016/j.compbiomed.2022.105382. Epub 2022 Mar 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验