Liu Jiahao, Jiao Ge
College of Computer Science, Hengyang Normal University, Hengyang, 421008 China.
Biomed Eng Lett. 2024 Jun 7;14(5):1137-1146. doi: 10.1007/s13534-024-00399-8. eCollection 2024 Sep.
In medical clinical scenarios for reasons such as patient privacy, information protection and data migration, when domain adaptation is needed for real scenarios, the source-domain data is often inaccessible and only the pre-trained source model on the source-domain is available. Existing solutions for this type of problem tend to forget the rich task experience previously learned on the source domain after adapting, which means that the model simply overfits the target-domain data when adapting and does not learn robust features that facilitate real task decisions. We address this problem by exploring the particular application of source-free domain adaptation in medical image segmentation and propose a two-stage additive source-free adaptation framework. We generalize the domain-invariant features by constraining the core pathological structure and semantic consistency between different perspectives. And we reduce the segmentation generated by locating and filtering elements that may have errors through Monte-Carlo uncertainty estimation. We conduct comparison experiments with some other methods on a cross-device polyp segmentation and a cross-modal brain tumor segmentation dataset, the results in both the target and source domains verify that the proposed method can effectively solve the domain offset problem and the model retains its dominance on the source domain after learning new knowledge of the target domain.This work provides valuable exploration for achieving additive learning on the target and source domains in the absence of source data and offers new ideas and methods for adaptation research in the field of medical image segmentation.
在医学临床场景中,由于患者隐私、信息保护和数据迁移等原因,在实际场景需要进行域适应时,源域数据往往无法获取,只有源域上预训练的源模型可用。针对这类问题的现有解决方案在适应后往往会忘记之前在源域学到的丰富任务经验,这意味着模型在适应时只是简单地过度拟合目标域数据,而没有学习到有助于实际任务决策的鲁棒特征。我们通过探索无源域适应在医学图像分割中的具体应用来解决这个问题,并提出了一个两阶段的加法无源适应框架。我们通过约束不同视角之间的核心病理结构和语义一致性来泛化域不变特征。并且我们通过蒙特卡洛不确定性估计来定位和过滤可能有错误的元素,从而减少分割结果。我们在跨设备息肉分割和跨模态脑肿瘤分割数据集上与其他一些方法进行了比较实验,目标域和源域的结果都验证了所提出的方法能够有效解决域偏移问题,并且模型在学习了目标域的新知识后在源域上仍保持优势。这项工作为在没有源数据的情况下在目标域和源域上实现加法学习提供了有价值的探索,并为医学图像分割领域的适应研究提供了新的思路和方法。