Yoshioka Shota, Nimura Sota, Naruto Masayuki, Saito Susumu
Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
Sci Adv. 2020 Oct 23;6(43). doi: 10.1126/sciadv.abc0274. Print 2020 Oct.
The Krebs cycle is the fuel/energy source for cellular activity and therefore of paramount importance for oxygen-based life. The cycle occurs in the mitochondrial matrix, where it produces and transfers electrons to generate energy-rich NADH and FADH, as well as C-, C-, and C-polycarboxylic acids as energy-poor metabolites. These metabolites are biorenewable resources that represent potential sustainable carbon feedstocks, provided that carbon-hydrogen bonds are restored to these molecules. In the present study, these polycarboxylic acids and other mitochondria-relevant metabolites underwent dehydration (alcohol-to-olefin and/or dehydrative cyclization) and reduction (hydrogenation and hydrogenolysis) to diols or triols upon reaction with H, catalyzed by sterically confined iridium-bipyridyl complexes. The investigation of these single-metal site catalysts provides valuable molecular insights into the development of molecular technologies for the reduction and dehydration of highly functionalized carbon resources.
三羧酸循环是细胞活动的燃料/能量来源,因此对基于氧气的生命至关重要。该循环发生在线粒体基质中,在那里它产生并转移电子以生成富含能量的NADH和FADH,以及作为能量贫化代谢物的C-、C-和C-多元羧酸。这些代谢物是生物可再生资源,代表了潜在的可持续碳原料,前提是这些分子中的碳氢键得以恢复。在本研究中,这些多元羧酸和其他与线粒体相关的代谢物在空间受限的铱-联吡啶配合物催化下与H反应时,经历脱水(醇到烯烃和/或脱水环化)和还原(氢化和氢解)生成二醇或三醇。对这些单金属位点催化剂的研究为开发用于高度官能化碳资源还原和脱水的分子技术提供了有价值的分子见解。