School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200040, China.
Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
Med Phys. 2021 Jul;48(7):3665-3678. doi: 10.1002/mp.14847. Epub 2021 Jun 22.
Diffuse large B-cell lymphoma (DLBCL) is an aggressive type of lymphoma with high mortality and poor prognosis that especially has a high incidence in Asia. Accurate segmentation of DLBCL lesions is crucial for clinical radiation therapy. However, manual delineation of DLBCL lesions is tedious and time-consuming. Automatic segmentation provides an alternative solution but is difficult for diffuse lesions without the sufficient utilization of multimodality information. Our work is the first study focusing on positron emission tomography and computed tomography (PET-CT) feature fusion for the DLBCL segmentation issue. We aim to improve the fusion performance of complementary information contained in PET-CT imaging with a hybrid learning module in the supervised convolutional neural network.
First, two encoder branches extract single-modality features, respectively. Next, the hybrid learning component utilizes them to generate spatial fusion maps which can quantify the contribution of complementary information. Such feature fusion maps are then concatenated with specific-modality (i.e., PET and CT) feature maps to obtain a representation of the final fused feature maps in different scales. Finally, the reconstruction part of our network creates a prediction map of DLBCL lesions by integrating and up-sampling the final fused feature maps from encoder blocks in different scales.
The ability of our method was evaluated to detect foreground and segment lesions in three independent body regions (nasopharynx, chest, and abdomen) of a set of 45 PET-CT scans. Extensive ablation experiments compared our method to four baseline techniques for multimodality fusion (input-level (IL) fusion, multichannel (MC) strategy, multibranch (MB) strategy, and quantitative weighting (QW) fusion). The results showed that our method achieved a high detection accuracy (99.63% in the nasopharynx, 99.51% in the chest, and 99.21% in the abdomen) and had the superiority in segmentation performance with the mean dice similarity coefficient (DSC) of 73.03% and the modified Hausdorff distance (MHD) of 4.39 mm, when compared with the baselines (DSC: IL: 53.08%, MC: 63.59%, MB: 69.98%, and QW: 72.19%; MHD: IL: 12.16 mm, MC: 6.46 mm, MB: 4.83 mm, and QW: 4.89 mm).
A promising segmentation method has been proposed for the challenging DLBCL lesions in PET-CT images, which improves the understanding of complementary information by feature fusion and may guide clinical radiotherapy. The statistically significant analysis based on P-value calculation has indicated a degree of significant difference between our proposed method and other baselines (almost metrics: P < 0.05). This is a preliminary research using a small sample size, and we will collect data continually to achieve the larger verification study.
弥漫性大 B 细胞淋巴瘤(DLBCL)是一种侵袭性淋巴瘤,死亡率和预后差,尤其在亚洲发病率较高。准确分割 DLBCL 病变对临床放射治疗至关重要。然而,手动勾画 DLBCL 病变既繁琐又耗时。自动分割提供了一种替代方法,但对于没有充分利用多模态信息的弥漫性病变,这是困难的。我们的工作是第一项专注于正电子发射断层扫描和计算机断层扫描(PET-CT)特征融合用于 DLBCL 分割问题的研究。我们旨在通过在有监督的卷积神经网络中的混合学习模块来提高 PET-CT 成像中包含的互补信息的融合性能。
首先,两个编码器分支分别提取单模态特征。接下来,混合学习组件利用它们生成空间融合图,这些图可以量化互补信息的贡献。然后,将这种特征融合图与特定模态(即 PET 和 CT)特征图连接起来,以获得不同尺度下最终融合特征图的表示。最后,我们网络的重建部分通过整合和上采样来自不同尺度编码器块的最终融合特征图来创建 DLBCL 病变的预测图。
在一组 45 个 PET-CT 扫描的三个独立身体区域(鼻咽、胸部和腹部)中,评估了我们的方法检测前景和分割病变的能力。广泛的消融实验将我们的方法与四种用于多模态融合的基线技术(输入级(IL)融合、多通道(MC)策略、多分支(MB)策略和定量加权(QW)融合)进行了比较。结果表明,我们的方法在检测准确率方面表现出色(鼻咽部位为 99.63%,胸部为 99.51%,腹部为 99.21%),在分割性能方面具有优势,其平均骰子相似系数(DSC)为 73.03%,修正的 Hausdorff 距离(MHD)为 4.39mm,与基线相比(DSC:IL:53.08%,MC:63.59%,MB:69.98%,QW:72.19%;MHD:IL:12.16mm,MC:6.46mm,MB:4.83mm,QW:4.89mm)。
针对 PET-CT 图像中具有挑战性的 DLBCL 病变,我们提出了一种有前景的分割方法,该方法通过特征融合提高了对互补信息的理解,可能有助于临床放射治疗。基于 P 值计算的统计学显着性分析表明,我们提出的方法与其他基线之间存在显着差异(几乎所有指标:P<0.05)。这是一项使用小样本量的初步研究,我们将继续收集数据,以实现更大规模的验证研究。