Nuclear Medicine Department, CHU Lille University Hospital, Lille, France.
Hematology Department, Group of Hospitals of the Catholic Institute of Lille, Lille, France.
Eur Radiol. 2023 May;33(5):3386-3395. doi: 10.1007/s00330-022-09375-1. Epub 2023 Jan 4.
New PET data-processing tools allow for automatic lesion selection and segmentation by a convolution neural network using artificial intelligence (AI) to obtain total metabolic tumor volume (TMTV) and total lesion glycolysis (TLG) routinely at the clinical workstation. Our objective was to evaluate an AI implemented in a new version of commercial software to verify reproducibility of results and time savings in a daily workflow.
Using the software to obtain TMTV and TLG, two nuclear physicians applied five methods to retrospectively analyze data for 51 patients. Methods 1 and 2 were fully automated with exclusion of lesions ≤ 0.5 mL and ≤ 0.1 mL, respectively. Methods 3 and 4 were fully automated with physician review. Method 5 was semi-automated and used as reference. Time and number of clicks to complete the measurement were recorded for each method. Inter-instrument and inter-observer variation was assessed by the intra-class coefficient (ICC) and Bland-Altman plots.
Between methods 3 and 5, for the main user, the ICC was 0.99 for TMTV and 1.0 for TLG. Between the two users applying method 3, ICC was 0.97 for TMTV and 0.99 for TLG. Mean processing time (± standard deviation) was 20 s ± 9.0 for method 1, 178 s ± 125.7 for method 3, and 326 s ± 188.6 for method 5 (p < 0.05).
AI-enabled lesion detection software offers an automated, fast, reliable, and consistently performing tool for obtaining TMTV and TLG in a daily workflow.
• Our study shows that artificial intelligence lesion detection software is an automated, fast, reliable, and consistently performing tool for obtaining total metabolic tumor volume and total lesion glycolysis in a daily workflow.
新的 PET 数据处理工具允许使用人工智能(AI)通过卷积神经网络自动选择和分割病变,以常规在临床工作站获得总代谢肿瘤体积(TMTV)和总病灶糖酵解(TLG)。我们的目标是评估新版本商业软件中实现的人工智能,以验证结果的可重复性和日常工作流程中的时间节省。
使用该软件获得 TMTV 和 TLG,两名核医学医师使用五种方法对 51 名患者的数据进行回顾性分析。方法 1 和 2 是完全自动化的,分别排除了≤0.5 mL 和≤0.1 mL 的病变。方法 3 和 4 是完全自动化的,并进行了医师审查。方法 5 是半自动的,并用作参考。记录了每种方法完成测量所需的时间和点击次数。仪器间和观察者间变异通过组内相关系数(ICC)和 Bland-Altman 图进行评估。
对于主要用户,方法 3 和 5 之间的 ICC 分别为 0.99 用于 TMTV 和 1.0 用于 TLG。两名用户应用方法 3 之间的 ICC 分别为 0.97 用于 TMTV 和 0.99 用于 TLG。方法 1 的平均处理时间(±标准差)为 20 s ± 9.0,方法 3 为 178 s ± 125.7,方法 5 为 326 s ± 188.6(p < 0.05)。
人工智能支持的病变检测软件为日常工作流程中获得 TMTV 和 TLG 提供了一种自动化、快速、可靠且一致的工具。
• 我们的研究表明,人工智能病变检测软件是一种自动化、快速、可靠且一致的工具,可用于在日常工作流程中获得总代谢肿瘤体积和总病灶糖酵解。