Suppr超能文献

Deep-Kcr:一种使用深度学习方法准确检测赖氨酸巴豆酰化位点的技术。

Deep-Kcr: accurate detection of lysine crotonylation sites using deep learning method.

机构信息

Center for Informational Biology at the University of Electronic Science and Technology of China.

Northeast Normal University.

出版信息

Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa255.

Abstract

As a newly discovered protein posttranslational modification, histone lysine crotonylation (Kcr) involved in cellular regulation and human diseases. Various proteomics technologies have been developed to detect Kcr sites. However, experimental approaches for identifying Kcr sites are often time-consuming and labor-intensive, which is difficult to widely popularize in large-scale species. Computational approaches are cost-effective and can be used in a high-throughput manner to generate relatively precise identification. In this study, we develop a deep learning-based method termed as Deep-Kcr for Kcr sites prediction by combining sequence-based features, physicochemical property-based features and numerical space-derived information with information gain feature selection. We investigate the performances of convolutional neural network (CNN) and five commonly used classifiers (long short-term memory network, random forest, LogitBoost, naive Bayes and logistic regression) using 10-fold cross-validation and independent set test. Results show that CNN could always display the best performance with high computational efficiency on large dataset. We also compare the Deep-Kcr with other existing tools to demonstrate the excellent predictive power and robustness of our method. Based on the proposed model, a webserver called Deep-Kcr was established and is freely accessible at http://lin-group.cn/server/Deep-Kcr.

摘要

作为一种新发现的蛋白质翻译后修饰,组蛋白赖氨酸巴豆酰化(Kcr)参与细胞调控和人类疾病。已经开发了各种蛋白质组学技术来检测 Kcr 位点。然而,鉴定 Kcr 位点的实验方法通常耗时耗力,难以在大规模物种中广泛推广。计算方法具有成本效益,可以以高通量的方式用于生成相对精确的识别。在这项研究中,我们开发了一种基于深度学习的方法,称为 Deep-Kcr,通过结合基于序列的特征、基于理化性质的特征和数值空间衍生信息以及信息增益特征选择,用于 Kcr 位点预测。我们使用 10 折交叉验证和独立集测试研究了卷积神经网络 (CNN) 和五种常用分类器(长短期记忆网络、随机森林、LogitBoost、朴素贝叶斯和逻辑回归)的性能。结果表明,CNN 在处理大数据集时具有高效的计算效率,始终表现出最佳性能。我们还将 Deep-Kcr 与其他现有工具进行了比较,以证明我们方法的出色预测能力和稳健性。基于所提出的模型,建立了一个名为 Deep-Kcr 的网络服务器,并可在 http://lin-group.cn/server/Deep-Kcr 上免费访问。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验