Suppr超能文献

EDS-Kcr:基于大语言模型的深度监督,用于跨多个物种识别蛋白质赖氨酸巴豆酰化位点。

EDS-Kcr: deep supervision based on large language model for identifying protein lysine crotonylation sites across multiple species.

作者信息

Zhang Hong-Qi, Lin Xin-Ran, Wang Yan-Ting, Pei Wen-Fang, Ma Guang-Ji, Zhou Ze-Xu, Deng Ke-Jun, Yan Dan, Liu Tian-Yuan

机构信息

School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006 Xiyuan Avenue, West Hi-Tech Zone, Chengdu 610054, China.

School of Medicine, University of Electronic Science and Technology of China, No. 2006 Xiyuan Avenue, West Hi-Tech Zone, Chengdu 610054, China.

出版信息

Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf249.

Abstract

With the rapid advancement of proteomics, post-translational modifications, particularly lysine crotonylation (Kcr), have gained significant attention in basic research, drug development, and disease treatment. However, current methods for identifying these modifications are often complex, costly, and time-consuming. To address these challenges, we have proposed EDS-Kcr, a novel bioinformatics tool that integrates the state-of-the-art protein language model ESM2 with deep supervision to improve the efficiency and accuracy of Kcr site prediction. EDS-Kcr demonstrated outstanding performance across various species datasets, proving its applicability to a wide range of proteins, including those from humans, plants, animals, and microbes. Compared to existing Kcr site prediction models, our model excelled in multiple key performance indicators, showcasing superior predictive power and robustness. Furthermore, we enhanced the transparency and interpretability of EDS-Kcr through visualization techniques and attention mechanisms. In conclusion, the EDS-Kcr model provides an efficient and reliable predictive tool suitable for disease diagnosis and drug development. We have also established a freely accessible web server for EDS-Kcr at http://eds-kcr.lin-group.cn/.

摘要

随着蛋白质组学的迅速发展,翻译后修饰,特别是赖氨酸巴豆酰化(Kcr),在基础研究、药物开发和疾病治疗中受到了广泛关注。然而,目前用于识别这些修饰的方法通常复杂、昂贵且耗时。为应对这些挑战,我们提出了EDS-Kcr,这是一种新型生物信息学工具,它将最先进的蛋白质语言模型ESM2与深度监督相结合,以提高Kcr位点预测的效率和准确性。EDS-Kcr在各种物种数据集上都表现出出色的性能,证明了其适用于广泛的蛋白质,包括来自人类、植物、动物和微生物的蛋白质。与现有的Kcr位点预测模型相比,我们的模型在多个关键性能指标上表现出色,展现出卓越的预测能力和稳健性。此外,我们通过可视化技术和注意力机制提高了EDS-Kcr的透明度和可解释性。总之,EDS-Kcr模型提供了一种适用于疾病诊断和药物开发的高效可靠的预测工具。我们还在http://eds-kcr.lin-group.cn/为EDS-Kcr建立了一个免费访问的网络服务器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验