Suppr超能文献

PlantNh-Kcr:一种用于预测植物中非组蛋白巴豆酰化位点的深度学习模型。

PlantNh-Kcr: a deep learning model for predicting non-histone crotonylation sites in plants.

作者信息

Jiang Yanming, Yan Renxiang, Wang Xiaofeng

机构信息

College of Mathematics and Computer Sciences, Shanxi Normal University, Taiyuan, 030031, China.

The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, 350002, China.

出版信息

Plant Methods. 2024 Feb 15;20(1):28. doi: 10.1186/s13007-024-01157-8.

Abstract

BACKGROUND

Lysine crotonylation (Kcr) is a crucial protein post-translational modification found in histone and non-histone proteins. It plays a pivotal role in regulating diverse biological processes in both animals and plants, including gene transcription and replication, cell metabolism and differentiation, as well as photosynthesis. Despite the significance of Kcr, detection of Kcr sites through biological experiments is often time-consuming, expensive, and only a fraction of crotonylated peptides can be identified. This reality highlights the need for efficient and rapid prediction of Kcr sites through computational methods. Currently, several machine learning models exist for predicting Kcr sites in humans, yet models tailored for plants are rare. Furthermore, no downloadable Kcr site predictors or datasets have been developed specifically for plants. To address this gap, it is imperative to integrate existing Kcr sites detected in plant experiments and establish a dedicated computational model for plants.

RESULTS

Most plant Kcr sites are located on non-histones. In this study, we collected non-histone Kcr sites from five plants, including wheat, tabacum, rice, peanut, and papaya. We then conducted a comprehensive analysis of the amino acid distribution surrounding these sites. To develop a predictive model for plant non-histone Kcr sites, we combined a convolutional neural network (CNN), a bidirectional long short-term memory network (BiLSTM), and attention mechanism to build a deep learning model called PlantNh-Kcr. On both five-fold cross-validation and independent tests, PlantNh-Kcr outperformed multiple conventional machine learning models and other deep learning models. Furthermore, we conducted an analysis of species-specific effect on the PlantNh-Kcr model and found that a general model trained using data from multiple species outperforms species-specific models.

CONCLUSION

PlantNh-Kcr represents a valuable tool for predicting plant non-histone Kcr sites. We expect that this model will aid in addressing key challenges and tasks in the study of plant crotonylation sites.

摘要

背景

赖氨酸巴豆酰化(Kcr)是一种在组蛋白和非组蛋白中发现的关键蛋白质翻译后修饰。它在调节动植物的多种生物过程中起着关键作用,包括基因转录与复制、细胞代谢与分化以及光合作用。尽管Kcr具有重要意义,但通过生物学实验检测Kcr位点往往耗时、昂贵,并且只能鉴定出一小部分巴豆酰化肽段。这一现实凸显了通过计算方法高效快速预测Kcr位点的必要性。目前,存在几种用于预测人类Kcr位点的机器学习模型,但专门针对植物的模型却很少。此外,尚未开发出专门用于植物的可下载Kcr位点预测器或数据集。为了填补这一空白,整合植物实验中检测到的现有Kcr位点并建立一个专门针对植物的计算模型势在必行。

结果

大多数植物Kcr位点位于非组蛋白上。在本研究中,我们从包括小麦、烟草、水稻、花生和木瓜在内的五种植物中收集了非组蛋白Kcr位点。然后,我们对这些位点周围的氨基酸分布进行了全面分析。为了开发一种用于植物非组蛋白Kcr位点的预测模型,我们结合了卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制,构建了一个名为PlantNh-Kcr的深度学习模型。在五折交叉验证和独立测试中,PlantNh-Kcr均优于多个传统机器学习模型和其他深度学习模型。此外,我们对物种特异性对PlantNh-Kcr模型的影响进行了分析,发现使用来自多个物种的数据训练的通用模型优于物种特异性模型。

结论

PlantNh-Kcr是预测植物非组蛋白Kcr位点的一个有价值的工具。我们期望该模型将有助于解决植物巴豆酰化位点研究中的关键挑战和任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ab/10870457/f8d83641c5ae/13007_2024_1157_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验