Suppr超能文献

真菌Kcr:一种用于预测致病真菌蛋白质中赖氨酸巴豆酰化的语言模型。

Fungi-Kcr: a language model for predicting lysine crotonylation in pathogenic fungal proteins.

作者信息

Chen Yong-Zi, Wang Xiaofeng, Wang Zhuo-Zhi, Li Haixin

机构信息

Cancer Biobank, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.

Key Laboratory of Molecular Cancer Epidemiology, Tianjin's Clinical Research Center for Cancer, Tianjin, China.

出版信息

Front Cell Infect Microbiol. 2025 Jul 15;15:1615443. doi: 10.3389/fcimb.2025.1615443. eCollection 2025.

Abstract

INTRODUCTION

Lysine crotonylation (Kcr) is an important post-translational modification (PTM) of proteins, playing a key role in regulating various biological processes in pathogenic fungi. However, the experimental identification of Kcr sites remains challenging due to the high cost and time-consuming nature of mass spectrometry-based techniques.

METHODS

To address this limitation, we developed Fungi-Kcr, a deep learning-based model designed to predict Kcr modification sites in fungal proteins. The model integrates convolutional neural networks (CNN), gated recurrent units (GRU), and word embedding to effectively capture both local and long-range sequence dependencies.

RESULTS

Comprehensive evaluations, including ten-fold cross-validation and independent testing, demonstrate that Fungi-Kcr achieves superior predictive performance compared to conventional machine learning models. Moreover, our results indicate that a general predictive model performs better than species-specific models.

DISCUSSION

The proposed model provides a valuable computational tool for the large-scale identification of Kcr sites, contributing to a deeper understanding of fungal pathogenesis and potential therapeutic targets. The source code and dataset for Fungi-Kcr are available at https://github.com/zayra77/Fungi-Kcr.

摘要

引言

赖氨酸巴豆酰化(Kcr)是蛋白质重要的翻译后修饰(PTM),在调节致病真菌的各种生物学过程中起关键作用。然而,由于基于质谱技术成本高且耗时,Kcr位点的实验鉴定仍然具有挑战性。

方法

为解决这一局限性,我们开发了Fungi-Kcr,这是一种基于深度学习的模型,旨在预测真菌蛋白质中的Kcr修饰位点。该模型整合了卷积神经网络(CNN)、门控循环单元(GRU)和词嵌入,以有效捕捉局部和长程序列依赖性。

结果

包括十折交叉验证和独立测试在内的综合评估表明,与传统机器学习模型相比,Fungi-Kcr具有卓越的预测性能。此外,我们的结果表明,通用预测模型比物种特异性模型表现更好。

讨论

所提出的模型为大规模鉴定Kcr位点提供了有价值的计算工具,有助于更深入地了解真菌发病机制和潜在治疗靶点。Fungi-Kcr的源代码和数据集可在https://github.com/zayra77/Fungi-Kcr获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f7/12303977/82cfff5461d1/fcimb-15-1615443-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验