Suppr超能文献

化学反应中铂纳米颗粒催化剂烧结动力学和稳定性的逐原子分析。

Atom-by-atom analysis of sintering dynamics and stability of Pt nanoparticle catalysts in chemical reactions.

作者信息

Martin Thomas E, Mitchell Robert W, Boyes Edward D, Gai Pratibha L

机构信息

Department of Physics, University of York, York YO10 5DD, UK.

York Nanocentre, University of York, York YO10 5DD, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2020 Dec 11;378(2186):20190597. doi: 10.1098/rsta.2019.0597. Epub 2020 Oct 26.

Abstract

Supported Pt nanoparticles are used extensively in chemical processes, including for fuel cells, fuels, pollution control and hydrogenation reactions. Atomic-level deactivation mechanisms play a critical role in the loss of performance. In this original research paper, we introduce real-time in-situ visualization and quantitative analysis of dynamic atom-by-atom sintering and stability of model Pt nanoparticles on a carbon support, under controlled chemical reaction conditions of temperature and continuously flowing gas. We use a novel environmental scanning transmission electron microscope with single-atom resolution, to understand the mechanisms. Our results track the areal density of dynamic single atoms on the support between nanoparticles and attached to them; both as migrating species in performance degradation and as potential new independent active species. We demonstrate that the decay of smaller nanoparticles is initiated by a local lack of single atoms; while a post decay increase in single-atom density suggests anchoring sites on the substrate before aggregation to larger particles. The analyses reveal a relationship between the density and mobility of single atoms, particle sizes and their nature in the immediate neighbourhood. The results are combined with practical catalysts important in technological processes. The findings illustrate the complex nature of sintering and deactivation. They are used to generate new fundamental insights into nanoparticle sintering dynamics at the single-atom level, important in the development of efficient supported nanoparticle systems for improved chemical processes and novel single-atom catalysis. This article is part of a discussion meeting issue 'Dynamic microscopy relating structure and function'.

摘要

负载型铂纳米颗粒广泛应用于化学过程,包括燃料电池、燃料、污染控制和氢化反应。原子级失活机制在性能损失中起着关键作用。在这篇原创研究论文中,我们介绍了在温度和连续流动气体的可控化学反应条件下,对碳载体上模型铂纳米颗粒的动态逐原子烧结和稳定性进行实时原位可视化和定量分析。我们使用具有单原子分辨率的新型环境扫描透射电子显微镜来了解其机制。我们的结果跟踪了纳米颗粒之间以及附着在纳米颗粒上的载体上动态单原子的面密度;它们既是性能降解中的迁移物种,也是潜在的新的独立活性物种。我们证明,较小纳米颗粒的衰减是由局部单原子缺乏引发的;而衰减后单原子密度的增加表明在聚集成较大颗粒之前,基底上存在锚定位点。分析揭示了单原子的密度和迁移率、颗粒尺寸及其紧邻区域性质之间的关系。研究结果与技术过程中重要的实际催化剂相结合。这些发现说明了烧结和失活的复杂性质。它们被用于在单原子水平上对纳米颗粒烧结动力学产生新的基本见解,这对于开发用于改进化学过程和新型单原子催化的高效负载型纳米颗粒系统非常重要。本文是“将结构与功能联系起来的动态显微镜”讨论会议专题的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ea/7661282/fdeb718c62ce/rsta20190597-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验