Wu Jianyu, Prasad Amit Kumar, Balatsky Alexander, Weissenrieder Jonas
Light and Matter Physics, School of Engineering Sciences, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
Struct Dyn. 2024 Sep 30;11(5):054301. doi: 10.1063/4.0000263. eCollection 2024 Sep.
The application of dynamic strain holds the potential to manipulate topological invariants in topological quantum materials. This study investigates dynamic structural deformation and strain modulation in the Weyl semimetal WTe, focusing on the microscopic regions with static strain defects. The interplay of static strain fields, at local line defects, with dynamic strain induced from photo-excited coherent acoustic phonons results in the formation of local standing waves at the defect sites. The dynamic structural distortion is precisely determined utilizing ultrafast electron microscopy with nanometer spatial and gigahertz temporal resolutions. Numerical simulations are employed to interpret the experimental results and explain the mechanism for how the local strain fields are transiently modulated through light-matter interaction. This research provides the experimental foundation for investigating predicted phenomena such as the mixed axial-torsional anomaly, acoustogalvanic effect, and axial magnetoelectric effects in Weyl semimetals, and paves the road to manipulate quantum invariants through transient strain fields in quantum materials.
动态应变的应用有望操控拓扑量子材料中的拓扑不变量。本研究调查了外尔半金属WTe₂中的动态结构变形和应变调制,重点关注具有静态应变缺陷的微观区域。局部线缺陷处的静态应变场与光激发相干声子诱导的动态应变之间的相互作用,导致在缺陷部位形成局部驻波。利用具有纳米空间分辨率和吉赫兹时间分辨率的超快电子显微镜精确测定了动态结构畸变。采用数值模拟来解释实验结果,并解释通过光与物质相互作用如何瞬时调制局部应变场的机制。这项研究为研究外尔半金属中预测的现象,如混合轴向扭转反常、声电效应和轴向磁电效应,提供了实验基础,并为通过量子材料中的瞬态应变场操控量子不变量铺平了道路。