Suppr超能文献

空间异质性对微波卫星土壤湿度周期性误差影响的评估

Assessment of the impact of spatial heterogeneity on microwave satellite soil moisture periodic error.

作者信息

Lei Fangni, Crow Wade T, Shen Huanfeng, Su Chun-Hsu, Holmes Thomas R H, Parinussa Robert M, Wang Guojie

机构信息

USDA ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD 20705, USA.

School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei 430072, China.

出版信息

Remote Sens Environ. 2018 Feb;205:85-99. doi: 10.1016/j.rse.2017.11.002. Epub 2017 Nov 24.

Abstract

An accurate temporal and spatial characterization of errors is required for the efficient processing, evaluation, and assimilation of remotely-sensed surface soil moisture retrievals. However, empirical evidence exists that passive microwave soil moisture retrievals are prone to periodic artifacts which may complicate their application in data assimilation systems (which commonly treat observational errors as being temporally white). In this paper, the link between such temporally-periodic errors and spatial land surface heterogeneity is examined. Both the synthetic experiment and site-specified cases reveal that, when combined with strong spatial heterogeneity, temporal periodicity in satellite sampling patterns (associated with exact repeat intervals of the polar-orbiting satellites) can lead to spurious high frequency spectral peaks in soil moisture retrievals. In addition, the global distribution of the most prominent and consistent 8-day spectral peak in the Advanced Microwave Scanning Radiometer - Earth Observing System soil moisture retrievals is revealed via a peak detection method. Three spatial heterogeneity indicators - based on microwave brightness temperature, land cover types, and long-term averaged vegetation index - are proposed to characterize the degree to which the variability of land surface is capable of inducing periodic error into satellite-based soil moisture retrievals. Regions demonstrating 8-day periodic errors are generally consistent with those exhibiting relatively higher heterogeneity indicators. This implies a causal relationship between spatial land surface heterogeneity and temporal periodic error in remotely-sensed surface soil moisture retrievals.

摘要

为了有效地处理、评估和同化遥感地表土壤湿度反演数据,需要对误差进行准确的时空特征描述。然而,有经验证据表明,被动微波土壤湿度反演容易出现周期性伪像,这可能会使其在数据同化系统中的应用变得复杂(数据同化系统通常将观测误差视为时间上的白噪声)。本文研究了这种时间周期性误差与空间地表异质性之间的联系。综合实验和特定地点的案例均表明,当与强烈的空间异质性相结合时,卫星采样模式中的时间周期性(与极轨卫星的精确重复周期相关)会导致土壤湿度反演中出现虚假的高频光谱峰值。此外,通过峰值检测方法揭示了先进微波扫描辐射计-地球观测系统土壤湿度反演中最显著且一致的8天光谱峰值的全球分布。提出了基于微波亮温、土地覆盖类型和长期平均植被指数的三个空间异质性指标,以表征地表变异性能够在基于卫星的土壤湿度反演中引入周期性误差的程度。表现出8天周期性误差的区域通常与那些具有相对较高异质性指标的区域一致。这意味着在遥感地表土壤湿度反演中,空间地表异质性与时间周期性误差之间存在因果关系。

相似文献

3
Information theoretic evaluation of satellite soil moisture retrievals.卫星土壤湿度反演的信息论评估
Remote Sens Environ. 2018 Jan;204:392-400. doi: 10.1016/j.rse.2017.10.016. Epub 2017 Oct 21.
6
Remotely sensed soil moisture to estimate savannah NDVI.利用遥感土壤湿度估算热带草原 NDVI。
PLoS One. 2018 Jul 11;13(7):e0200328. doi: 10.1371/journal.pone.0200328. eCollection 2018.
8
Error Propagation in Microwave Soil Moisture and Vegetation Optical Depth Retrievals.微波土壤湿度与植被光学深度反演中的误差传播
IEEE J Sel Top Appl Earth Obs Remote Sens. 2021;14:11311-11323. doi: 10.1109/jstars.2021.3124857. Epub 2021 Nov 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验