Suppr超能文献

相似文献

1
Information theoretic evaluation of satellite soil moisture retrievals.
Remote Sens Environ. 2018 Jan;204:392-400. doi: 10.1016/j.rse.2017.10.016. Epub 2017 Oct 21.
2
Estimating surface soil moisture from SMAP observations using a Neural Network technique.
Remote Sens Environ. 2018 Jan;204:43-59. doi: 10.1016/j.rse.2017.10.045. Epub 2017 Nov 11.
3
Global-scale Evaluation of SMAP, SMOS and ASCAT Soil Moisture Products using Triple Collocation.
Remote Sens Environ. 2018 Sep 1;214:1-13. doi: 10.1016/j.rse.2018.05.008. Epub 2018 May 26.
4
Evaluating soil moisture retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets.
Remote Sens Environ. 2017 May;193:257-273. doi: 10.1016/j.rse.2017.03.010. Epub 2017 Mar 20.
5
Precipitation Estimation Using L-Band and C-Band Soil Moisture Retrievals.
Water Resour Res. 2016 Sep;52(9):7213-7225. doi: 10.1002/2016WR019024. Epub 2016 Sep 6.
6
A Comparative Study of the SMAP Passive Soil Moisture Product With Existing Satellite-Based Soil Moisture Products.
IEEE Trans Geosci Remote Sens. 2017 May;55(5):2959-2971. doi: 10.1109/TGRS.2017.2656859. Epub 2017 Feb 14.
8
Evaluation of SMOS, SMAP, AMSR2 and FY-3C soil moisture products over China.
PLoS One. 2022 Apr 7;17(4):e0266091. doi: 10.1371/journal.pone.0266091. eCollection 2022.
9
Assessment of the impact of spatial heterogeneity on microwave satellite soil moisture periodic error.
Remote Sens Environ. 2018 Feb;205:85-99. doi: 10.1016/j.rse.2017.11.002. Epub 2017 Nov 24.
10
Data Assimilation to extract Soil Moisture Information from SMAP Observations.
Remote Sens (Basel). 2017 Nov;9(11):1179. doi: 10.3390/rs9111179. Epub 2017 Nov 17.

引用本文的文献

2
Caravan - A global community dataset for large-sample hydrology.
Sci Data. 2023 Jan 31;10(1):61. doi: 10.1038/s41597-023-01975-w.
4
Evaluation of SMOS, SMAP, AMSR2 and FY-3C soil moisture products over China.
PLoS One. 2022 Apr 7;17(4):e0266091. doi: 10.1371/journal.pone.0266091. eCollection 2022.
5
Assimilation of SMAP Brightness Temperature Observations in the GEOS Land-Atmosphere Data Assimilation System.
IEEE J Sel Top Appl Earth Obs Remote Sens. 2021;14:10628-10643. doi: 10.1109/jstars.2021.3118595. Epub 2021 Oct 7.
6
SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US.
Sci Data. 2021 Oct 11;8(1):264. doi: 10.1038/s41597-021-01050-2.
7
Global-scale Evaluation of SMAP, SMOS and ASCAT Soil Moisture Products using Triple Collocation.
Remote Sens Environ. 2018 Sep 1;214:1-13. doi: 10.1016/j.rse.2018.05.008. Epub 2018 May 26.
8
Soil Moisture Data Assimilation to Estimate Irrigation Water Use.
J Adv Model Earth Syst. 2019 Nov;11(11):3670-3690. doi: 10.1029/2019MS001797. Epub 2019 Nov 17.
9
Global Investigation of Soil Moisture and Latent Heat Flux Coupling Strength.
Water Resour Res. 2018 Oct 1;54(10):8196-8215. doi: 10.1029/2018wr023469.

本文引用的文献

1
Confronting weather and climate models with observational data from soil moisture networks over the United States.
J Hydrometeorol. 2016 Apr;17(4):1049-1067. doi: 10.1175/JHM-D-15-0196.1. Epub 2016 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验