Suppr超能文献

脑功能网络改变及其在轻度认知障碍识别中的作用研究

Investigation on the Alteration of Brain Functional Network and Its Role in the Identification of Mild Cognitive Impairment.

作者信息

Zhang Lulu, Ni Huangjing, Yu Zhinan, Wang Jun, Qin Jiaolong, Hou Fengzhen, Yang Albert

机构信息

Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, China.

Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China.

出版信息

Front Neurosci. 2020 Sep 30;14:558434. doi: 10.3389/fnins.2020.558434. eCollection 2020.

Abstract

Mild cognitive impairment (MCI) is generally regarded as a prodromal stage of Alzheimer's disease (AD). In coping with the challenges caused by AD, we analyzed resting-state functional magnetic resonance imaging data of 82 MCI subjects and 93 normal controls (NCs). The alteration of brain functional network in MCI was investigated on three scales, including global metrics, nodal characteristics, and modular properties. The results supported the existence of small worldness, hubs, and community structure in the brain functional networks of both groups. Compared with NCs, the network altered in MCI over all the three scales. In scale I, we found significantly decreased characteristic path length and increased global efficiency in MCI. Moreover, altered global network metrics were associated with cognitive level evaluated by neuropsychological assessments. In scale II, the nodal betweenness centrality of some global hubs, such as the right Crus II of cerebellar hemisphere (CERCRU2.R) and fusiform gyrus (FFG.R), changed significantly and associated with the severity and cognitive impairment in MCI. In scale III, although anatomically adjacent regions tended to be clustered into the same module regardless of group, discrepancies existed in the composition of modules in both groups, with a prominent separation of the cerebellum and a less localized organization of community structure in MCI compared with NC. Taking advantages of random forest approach, we achieved an accuracy of 91.4% to discriminate MCI patients from NCs by integrating cognitive assessments and network analysis. The importance of the used features fed into the classifier further validated the nodal characteristics of CERCRU2.R and FFG.R could be potential biomarkers in the identification of MCI. In conclusion, the present study demonstrated that the brain functional connectome data altered at the stage of MCI and could assist the automatic diagnosis of MCI patients.

摘要

轻度认知障碍(MCI)通常被视为阿尔茨海默病(AD)的前驱阶段。为应对AD带来的挑战,我们分析了82名MCI受试者和93名正常对照(NC)的静息态功能磁共振成像数据。从全局指标、节点特征和模块属性三个尺度研究了MCI患者脑功能网络的改变。结果支持两组脑功能网络均存在小世界特性、枢纽和社区结构。与NC相比,MCI在所有三个尺度上网络均发生改变。在尺度I中,我们发现MCI患者特征路径长度显著缩短,全局效率增加。此外,改变的全局网络指标与通过神经心理学评估的认知水平相关。在尺度II中,一些全局枢纽的节点中介中心性发生显著变化,如小脑半球右 Crus II(CERCRU2.R)和梭状回(FFG.R),并与MCI的严重程度和认知障碍相关。在尺度III中,尽管无论组别,解剖学上相邻的区域倾向于聚集成同一模块,但两组模块组成存在差异,与NC相比,MCI中小脑有明显分离,社区结构组织性较差。利用随机森林方法,通过整合认知评估和网络分析,我们区分MCI患者和NC的准确率达到91.4%。输入分类器的所用特征的重要性进一步验证了CERCRU2.R和FFG.R的节点特征可能是识别MCI的潜在生物标志物。总之,本研究表明MCI阶段脑功能连接组数据发生改变,可辅助MCI患者的自动诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b914/7556272/40a1a529cdf9/fnins-14-558434-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验