Suppr超能文献

用于区分轻度认知障碍的功能性脑连接组中的特征选择与信息组合及脑模式改变分析

Feature Selection and Combination of Information in the Functional Brain Connectome for Discrimination of Mild Cognitive Impairment and Analyses of Altered Brain Patterns.

作者信息

Xu Xiaowen, Li Weikai, Mei Jian, Tao Mengling, Wang Xiangbin, Zhao Qianhua, Liang Xiaoniu, Wu Wanqing, Ding Ding, Wang Peijun

机构信息

Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China.

出版信息

Front Aging Neurosci. 2020 Feb 19;12:28. doi: 10.3389/fnagi.2020.00028. eCollection 2020.

Abstract

Mild cognitive impairment (MCI) is often considered a critical time window for predicting early conversion to Alzheimer's disease (AD). Brain functional connectome data (i.e., functional connections, global and nodal graph metrics) based on resting-state functional magnetic resonance imaging (rs-fMRI) provides numerous information about brain networks and has been used to discriminate normal controls (NCs) from subjects with MCI. In this paper, Student's -tests and group-least absolute shrinkage and selection operator (group-LASSO) were used to extract functional connections with significant differences and the most discriminative network nodes, respectively. Based on group-LASSO, the middle temporal, inferior temporal, lingual, posterior cingulate, and middle frontal gyri were the most predominant brain regions for nodal observation in MCI patients. Nodal graph metrics (within-module degree, participation coefficient, and degree centrality) showed the maximum discriminative ability. To effectively combine the multipattern information, we employed the multiple kernel learning support vector machine (MKL-SVM). Combined with functional connectome information, the MKL-SVM achieved a good classification performance (area under the receiving operating characteristic curve = 0.9728). Additionally, the altered brain connectome pattern revealed that functional connectivity was generally decreased in the whole-brain network, whereas graph theory topological attributes of some special nodes in the brain network were increased in MCI patients. Our findings demonstrate that optimal feature selection and combination of all connectome features (i.e., functional connections, global and nodal graph metrics) can achieve good performance in discriminating NCs from MCI subjects. Thus, the combination of functional connections and global and nodal graph metrics of brain networks can predict the occurrence of MCI and contribute to the early clinical diagnosis of AD.

摘要

轻度认知障碍(MCI)通常被认为是预测早期转变为阿尔茨海默病(AD)的关键时间窗口。基于静息态功能磁共振成像(rs-fMRI)的脑功能连接组数据(即功能连接、全局和节点图指标)提供了有关脑网络的大量信息,并已用于区分正常对照(NC)与MCI患者。在本文中,分别使用学生t检验和组套索(group-LASSO)来提取具有显著差异的功能连接和最具鉴别力的网络节点。基于组套索,颞中回、颞下回、舌回、后扣带回和额中回是MCI患者节点观察中最主要的脑区。节点图指标(模块内度、参与系数和度中心性)显示出最大的鉴别能力。为了有效组合多模式信息,我们采用了多核学习支持向量机(MKL-SVM)。结合功能连接组信息,MKL-SVM取得了良好的分类性能(接受者操作特征曲线下面积=0.9728)。此外,改变的脑连接组模式显示,全脑网络中的功能连接普遍减少,而MCI患者脑网络中一些特殊节点的图论拓扑属性增加。我们的研究结果表明,对所有连接组特征(即功能连接、全局和节点图指标)进行最佳特征选择和组合,可以在区分NC与MCI受试者方面取得良好性能。因此,脑网络的功能连接与全局和节点图指标的组合可以预测MCI的发生,并有助于AD的早期临床诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验