Carter-Fenk Kevin, Herbert John M
Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA.
Phys Chem Chem Phys. 2020 Nov 21;22(43):24870-24886. doi: 10.1039/d0cp05039c. Epub 2020 Oct 27.
The nature of π-π interactions has long been debated. The term "π-stacking" is considered by some to be a misnomer, in part because overlapping π-electron densities are thought to incur steric repulsion, and the physical origins of the widely-encountered "slip-stacked" motif have variously been attributed to either sterics or electrostatics, in competition with dispersion. Here, we use quantum-mechanical energy decomposition analysis to investigate π-π interactions in supramolecular complexes of polycyclic aromatic hydrocarbons, ranging in size up to realistic models of graphene, and for comparison we perform the same analysis on stacked complexes of polycyclic saturated hydrocarbons, which are cyclohexane-based analogues of graphane. Our results help to explain the short-range structure of liquid hydrocarbons that is inferred from neutron scattering, trends in melting-point data, the interlayer separation of graphene sheets, and finally band gaps and observation of molecular plasmons in graphene nanoribbons. Analysis of intermolecular forces demonstrates that aromatic π-π interactions constitute a unique and fundamentally quantum-mechanical form of non-bonded interaction. Not only do stacked π-π architectures enhance dispersion, but quadrupolar electrostatic interactions that may be repulsive at long range are rendered attractive at the intermolecular distances that characterize π-stacking, as a result of charge penetration effects. The planar geometries of aromatic sp carbon networks lead to attractive interactions that are "served up on a molecular pizza peel", and adoption of slip-stacked geometries minimizes steric (rather than electrostatic) repulsion. The slip-stacked motif therefore emerges not as a defect induced by electrostatic repulsion but rather as a natural outcome of a conformational landscape that is dominated by van der Waals interactions (dispersion plus Pauli repulsion), and is therefore fundamentally quantum-mechanical in its origins. This reinterpretation of the forces responsible for π-stacking has important implications for the manner in which non-bonded interactions are modeled using classical force fields, and for rationalizing the prevalence of the slip-stacked π-π motif in protein crystal structures.
π-π相互作用的本质长期以来一直存在争议。一些人认为“π堆积”这个术语用词不当,部分原因是重叠的π电子密度被认为会产生空间排斥力,而广泛存在的“滑移堆积”模式的物理起源,在与色散的竞争中,被认为是空间效应或静电效应。在这里,我们使用量子力学能量分解分析来研究多环芳烃超分子复合物中的π-π相互作用,复合物的大小可达石墨烯的实际模型大小。为了进行比较,我们对多环饱和烃的堆积复合物进行了相同的分析,这些复合物是基于环己烷的石墨烯类似物。我们的结果有助于解释从中子散射推断出的液态烃的短程结构、熔点数据的趋势、石墨烯片层的层间间距,以及最终石墨烯纳米带中的带隙和分子等离子体的观测。分子间力的分析表明,芳香族π-π相互作用构成了一种独特的、从根本上来说是量子力学形式的非键相互作用。堆叠的π-π结构不仅增强了色散,而且由于电荷穿透效应,在长程可能具有排斥性的四极静电相互作用,在表征π堆积的分子间距离处变得具有吸引力。芳香族sp碳网络的平面几何形状导致了“像分子披萨皮上呈现的”有吸引力的相互作用,而采用滑移堆积几何形状可使空间(而非静电)排斥力最小化。因此,滑移堆积模式并非由静电排斥引起的缺陷,而是由范德华相互作用(色散加泡利排斥)主导的构象景观的自然结果,因此其起源从根本上来说是量子力学的。这种对π堆积所涉及的力的重新解释,对于使用经典力场对非键相互作用进行建模的方式,以及解释蛋白质晶体结构中滑移堆积的π-π模式的普遍性具有重要意义。